Suppr超能文献

动态加权普通最小二乘法的非正则推断:理解婴儿期固体食物摄入量对儿童期体重的影响。

Non-regular inference for dynamic weighted ordinary least squares: understanding the impact of solid food intake in infancy on childhood weight.

作者信息

Simoneau Gabrielle, Moodie Erica E M, Platt Robert W, Chakraborty Bibhas

机构信息

Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 1020 Pine West, Montreal, QC H3A 1A2, Canada and Duke-NUS Medical School, National University of Singapore, 8 College Road, Singapore 169857, Singapore.

出版信息

Biostatistics. 2018 Apr 1;19(2):233-246. doi: 10.1093/biostatistics/kxx035.

Abstract

A dynamic treatment regime (DTR) is a set of decision rules to be applied across multiple stages of treatments. The decisions are tailored to individuals, by inputting an individual's observed characteristics and outputting a treatment decision at each stage for that individual. Dynamic weighted ordinary least squares (dWOLS) is a theoretically robust and easily implementable method for estimating an optimal DTR. As many related DTR methods, the dWOLS treatment effects estimators can be non-regular when true treatment effects are zero or very small, which results in invalid Wald-type or standard bootstrap confidence intervals. Inspired by an analysis of the effect of diet in infancy on measures of weight and body size in later childhood-a setting where the exposure is distant in time and whose effect is likely to be small-we investigate the use of the $m$-out-of-$n$ bootstrap with dWOLS as method of analysis for valid inferences of optimal DTR. We provide an extensive simulation study to compare the performance of different choices of resample size $m$ in situations where the treatment effects are likely to be non-regular. We illustrate the methodology using data from the PROmotion of Breastfeeding Intervention Trial to study the effect of solid food intake in infancy on long-term health outcomes.

摘要

动态治疗方案(DTR)是一套适用于多个治疗阶段的决策规则。这些决策是针对个体量身定制的,通过输入个体的观察特征,并在每个阶段为该个体输出一个治疗决策。动态加权普通最小二乘法(dWOLS)是一种理论上稳健且易于实施的估计最优DTR的方法。与许多相关的DTR方法一样,当真实治疗效果为零或非常小时,dWOLS治疗效果估计量可能是非正则的,这会导致无效的 Wald 型或标准自助置信区间。受关于婴儿期饮食对儿童后期体重和体型测量指标影响的分析启发——在这种情况下,暴露时间较远且其影响可能较小——我们研究使用带dWOLS的n选m自助法作为分析方法,以对最优DTR进行有效推断。我们进行了广泛的模拟研究,以比较在治疗效果可能是非正则的情况下,不同重采样大小m选择的性能。我们使用母乳喂养干预试验促进项目的数据来说明该方法,以研究婴儿期固体食物摄入量对长期健康结果的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验