Suppr超能文献

贝叶斯推断在实践中最优动态治疗方案的应用。

Bayesian inference for optimal dynamic treatment regimes in practice.

机构信息

Department of Epidemiology & Biostatistics, McGill University, Montréal, QC, Canada.

Department of Mathematics and Statistics, McGill University, Montréal, QC, Canada.

出版信息

Int J Biostat. 2023 May 17;19(2):309-331. doi: 10.1515/ijb-2022-0073. eCollection 2023 Nov 1.

Abstract

In this work, we examine recently developed methods for Bayesian inference of optimal dynamic treatment regimes (DTRs). DTRs are a set of treatment decision rules aimed at tailoring patient care to patient-specific characteristics, thereby falling within the realm of precision medicine. In this field, researchers seek to tailor therapy with the intention of improving health outcomes; therefore, they are most interested in identifying DTRs. Recent work has developed Bayesian methods for identifying optimal DTRs in a family indexed by via Bayesian dynamic marginal structural models (MSMs) (Rodriguez Duque D, Stephens DA, Moodie EEM, Klein MB. Semiparametric Bayesian inference for dynamic treatment regimes via dynamic regime marginal structural models. Biostatistics; 2022. (In Press)); we review the proposed estimation procedure and illustrate its use via the new BayesDTR R package. Although methods in Rodriguez Duque D, Stephens DA, Moodie EEM, Klein MB. (Semiparametric Bayesian inference for dynamic treatment regimes via dynamic regime marginal structural models. Biostatistics; 2022. (In Press)) can estimate optimal DTRs well, they may lead to biased estimators when the model for the expected outcome if everyone in a population were to follow a given treatment strategy, known as a value function, is misspecified or when a grid search for the optimum is employed. We describe recent work that uses a Gaussian process prior on the value function as a means to robustly identify optimal DTRs (Rodriguez Duque D, Stephens DA, Moodie EEM. Estimation of optimal dynamic treatment regimes using Gaussian processes; 2022. Available from: https://doi.org/10.48550/arXiv.2105.12259). We demonstrate how a approach may be implemented with the BayesDTR package and contrast it with other value-search approaches to identifying optimal DTRs. We use data from an HIV therapeutic trial in order to illustrate a standard analysis with these methods, using both the original observed trial data and an additional simulated component to showcase a longitudinal (two-stage DTR) analysis.

摘要

在这项工作中,我们研究了最近开发的用于贝叶斯推断最优动态治疗方案(DTR)的方法。DTR 是一组治疗决策规则,旨在根据患者的特定特征为患者量身定制护理,因此属于精准医学领域。在这个领域,研究人员试图通过定制治疗来改善健康结果;因此,他们最感兴趣的是确定 DTR。最近的工作已经开发了贝叶斯方法,通过贝叶斯动态边际结构模型(MSM)(Rodriguez Duque D、Stephens DA、Moodie EEM、Klein MB. 通过动态治疗方案边际结构模型的半参数贝叶斯推断动态治疗方案。生物统计学;2022 年。(即将出版))对通过动态治疗方案边际结构模型进行索引的家族中的最优 DTR 进行识别;我们回顾了所提出的估计程序,并通过新的 BayesDTR R 包来说明其使用。尽管 Rodriguez Duque D、Stephens DA、Moodie EEM、Klein MB 中的方法(通过动态治疗方案边际结构模型的半参数贝叶斯推断动态治疗方案。生物统计学;2022 年。(即将出版))可以很好地估计最优 DTR,但当用于预期结果的模型(如果每个人都遵循特定的治疗策略,称为价值函数)被指定错误或当使用网格搜索寻找最优值时,它们可能会导致有偏差的估计值。我们描述了最近的工作,该工作使用价值函数的高斯过程先验作为稳健识别最优 DTR 的一种手段(Rodriguez Duque D、Stephens DA、Moodie EEM. 使用高斯过程估计最优动态治疗方案;2022 年。可从 https://doi.org/10.48550/arXiv.2105.12259 获得)。我们展示了如何使用 BayesDTR 包实现一种 方法,并将其与其他识别最优 DTR 的价值搜索方法进行对比。我们使用 HIV 治疗试验的数据来说明这些方法的标准分析,使用原始观察试验数据和一个额外的模拟组件来展示纵向(两阶段 DTR)分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验