Suppr超能文献

谷氨酸可逆配位高价镍保护[NiFe]氢化酶活性中心免受氧的侵害。

Reversible Glutamate Coordination to High-Valent Nickel Protects the Active Site of a [NiFe] Hydrogenase from Oxygen.

机构信息

Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany.

Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany.

出版信息

J Am Chem Soc. 2022 Sep 21;144(37):17022-17032. doi: 10.1021/jacs.2c06400. Epub 2022 Sep 9.

Abstract

NAD-reducing [NiFe] hydrogenases are valuable biocatalysts for H-based energy conversion and the regeneration of nucleotide cofactors. While most hydrogenases are sensitive toward O and elevated temperatures, the soluble NAD-reducing [NiFe] hydrogenase from (SH) is O-tolerant and thermostable. Thus, it represents a promising candidate for biotechnological applications. Here, we have investigated the catalytic activity and active-site structure of native SH and variants in which a glutamate residue in the active-site cavity was replaced by glutamine, alanine, and aspartate. Our biochemical, spectroscopic, and theoretical studies reveal that at least two active-site states of oxidized SH feature an unusual architecture in which the glutamate acts as a terminal ligand of the active-site nickel. This observation demonstrates that crystallographically observed glutamate coordination represents a native feature of the enzyme. One of these states is diamagnetic and characterized by a very high stretching frequency of an iron-bound active-site CO ligand. Supported by density-functional-theory calculations, we identify this state as a high-valent species with a biologically unprecedented formal Ni(IV) ground state. Detailed insights into its structure and dynamics were obtained by ultrafast and two-dimensional infrared spectroscopy, demonstrating that it represents a conformationally strained state with unusual bond properties. Our data further show that this state is selectively and reversibly formed under oxic conditions, especially upon rapid exposure to high O levels. We conclude that the kinetically controlled formation of this six-coordinate high-valent state represents a specific and precisely orchestrated stereoelectronic response toward O that could protect the enzyme from oxidative damage.

摘要

NAD 还原[NiFe]氢化酶是用于 H 基能量转换和核苷酸辅酶再生的有价值的生物催化剂。虽然大多数氢化酶对 O 和高温敏感,但可溶性 NAD 还原[NiFe]氢化酶来自(SH)对 O 具有耐受性和热稳定性。因此,它代表了生物技术应用的有前途的候选者。在这里,我们研究了天然 SH 和变体的催化活性和活性部位结构,其中活性部位腔中的谷氨酸残基被谷氨酰胺、丙氨酸和天冬氨酸取代。我们的生化、光谱和理论研究表明,氧化 SH 的至少两种活性状态具有不寻常的结构,其中谷氨酸作为活性部位镍的末端配体。这一观察表明,晶体学观察到的谷氨酸配位代表了酶的天然特征。这些状态中的一种是抗磁性的,其特征是铁结合的活性部位 CO 配体的非常高的伸缩频率。密度泛函理论计算支持,我们将这种状态鉴定为具有前所未有的生物 Ni(IV)基态的高价物种。通过超快和二维红外光谱获得了对其结构和动力学的详细了解,证明它代表了具有异常键性质的构象应变状态。我们的数据进一步表明,这种状态在有氧条件下特别是在快速暴露于高 O 水平下选择性地和可逆地形成。我们得出结论,这种六配位高价状态的动力学控制形成代表了对 O 的特定且精确协调的立体电子响应,可保护酶免受氧化损伤。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验