Tajima Takahisa, Tomita Kousuke, Miyahara Hiroyuki, Watanabe Kenshi, Aki Tsunehiro, Okamura Yoshiko, Matsumura Yukihiko, Nakashimada Yutaka, Kato Junichi
Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan; Core Research of Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Goban-cho, Chiyoda-ku, Tokyo 102-0076, Japan.
Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan.
J Biosci Bioeng. 2018 Feb;125(2):180-184. doi: 10.1016/j.jbiosc.2017.09.002. Epub 2017 Sep 29.
Macroalgae are a promising biomass feedstock for energy and valuable chemicals. Mannitol and alginate are the major carbohydrates found in the microalga Laminaria japonica (Konbu). To convert mannitol to fructose for its utilization as a carbon source in mannitol non-assimilating bacteria, a psychrophile-based simple biocatalyst (PSCat) was constructed using a psychrophile as a host by expressing mesophilic enzymes, including mannitol 2-dehydrogenase for mannitol oxidation, and NADH oxidase and alkyl hydroxyperoxide reductase for NAD regeneration. PSCat was treated at 40 °C to inactivate the psychrophilic enzymes responsible for byproduct formation and to increase the membrane permeability of the substrate. PSCat efficiently converted mannitol to fructose with high conversion yield without additional input of NAD. Konbu extract containing mannitol was converted to fructose with hydroperoxide scavenging, inhibiting the mannitol dehydrogenase activity. Auranthiochytrium sp. could grow well in the presence of fructose converted by PSCat. Thus, PSCat is a potential carbohydrate converter for mannitol non-assimilating microorganism.
大型海藻是一种很有前景的能源和高价值化学品生物质原料。甘露醇和海藻酸盐是海带中发现的主要碳水化合物。为了将甘露醇转化为果糖,以便在不能利用甘露醇的细菌中用作碳源,通过以嗜冷菌为宿主表达嗜温酶构建了一种基于嗜冷菌的简单生物催化剂(PSCat),这些嗜温酶包括用于氧化甘露醇的甘露醇2-脱氢酶,以及用于NAD再生的NADH氧化酶和烷基过氧化氢还原酶。将PSCat在40℃下处理,以灭活负责副产物形成的嗜冷酶,并增加底物的膜通透性。PSCat无需额外输入NAD就能高效地将甘露醇转化为果糖,转化率很高。含有甘露醇的海带提取物在清除过氧化氢、抑制甘露醇脱氢酶活性的情况下被转化为果糖。在PSCat转化产生的果糖存在下, Aurantiochytrium sp.能够良好生长。因此,PSCat是一种潜在的用于不能利用甘露醇的微生物的碳水化合物转化剂。