Higuchi M, Yamamoto Y, Poole L B, Shimada M, Sato Y, Takahashi N, Kamio Y
Department of Molecular and Cell Biology, Division of Life Science, Graduate School of Agriculture, Tohoku University, Aoba-ku, Sendai 981-8555, Japan.
J Bacteriol. 1999 Oct;181(19):5940-7. doi: 10.1128/JB.181.19.5940-5947.1999.
We have previously identified two distinct NADH oxidases corresponding to H(2)O(2)-forming oxidase (Nox-1) and H(2)O-forming oxidase (Nox-2) induced in Streptococcus mutans. Sequence analyses indicated a strong similarity between Nox-1 and AhpF, the flavoprotein component of Salmonella typhimurium alkyl hydroperoxide reductase; an open reading frame upstream of nox-1 also showed homology to AhpC, the direct peroxide-reducing component of S. typhimurium alkyl hydroperoxide reductase. To determine their physiological functions in S. mutans, we constructed knockout mutants of Nox-1, Nox-2, and/or the AhpC homologue; we verified that Nox-2 plays an important role in energy metabolism through the regeneration of NAD(+) but Nox-1 contributes negligibly. The Nox-2 mutant exhibited greatly reduced aerobic growth on mannitol, whereas there was no significant effect of aerobiosis on the growth on mannitol of the other strains or growth on glucose of any of the strains. Although the Nox-2 mutants grew well on glucose aerobically, the end products of glucose fermentation by the Nox-2 mutant were substantially shifted to higher ratios of lactic acid to acetic acid compared with wild-type cells. The resistance to cumene hydroperoxide of Escherichia coli TA4315 (ahpCF-defective mutant) transformed with pAN119 containing both nox-1 and ahpC genes was not only restored but enhanced relative to that of E. coli K-12 (parent strain), indicating a clear function for Nox-1 as part of an alkyl hydroperoxide reductase system in vivo in combination with AhpC. Surprisingly, the Nox-1 and/or AhpC deficiency had no effect on the sensitivity of S. mutans to cumene hydroperoxide and H(2)O(2), implying that the existence of some other antioxidant system(s) independent of Nox-1 in S. mutans compensates for the deficiency.
我们之前已鉴定出两种不同的NADH氧化酶,它们分别对应变形链球菌中诱导产生的生成H₂O₂的氧化酶(Nox-1)和生成H₂O的氧化酶(Nox-2)。序列分析表明,Nox-1与鼠伤寒沙门氏菌烷基过氧化氢还原酶的黄素蛋白组分AhpF有很强的相似性;nox-1上游的一个开放阅读框也与鼠伤寒沙门氏菌烷基过氧化氢还原酶的直接过氧化物还原组分AhpC有同源性。为了确定它们在变形链球菌中的生理功能,我们构建了Nox-1、Nox-2和/或AhpC同源物的敲除突变体;我们证实Nox-2通过NAD⁺的再生在能量代谢中起重要作用,但Nox-1的贡献可忽略不计。Nox-2突变体在甘露醇上的有氧生长显著降低,而好氧条件对其他菌株在甘露醇上的生长或任何菌株在葡萄糖上的生长均无显著影响。尽管Nox-2突变体在有氧条件下在葡萄糖上生长良好,但与野生型细胞相比,Nox-2突变体的葡萄糖发酵终产物中乳酸与乙酸的比例大幅升高。用含有nox-1和ahpC基因的pAN119转化的大肠杆菌TA4315(ahpCF缺陷突变体)对异丙苯过氧化氢的抗性不仅得以恢复,而且相对于大肠杆菌K-12(亲本菌株)有所增强,这表明Nox-1在体内与AhpC结合作为烷基过氧化氢还原酶系统的一部分具有明确的功能。令人惊讶的是,Nox-1和/或AhpC缺陷对变形链球菌对异丙苯过氧化氢和H₂O₂的敏感性没有影响,这意味着变形链球菌中存在一些独立于Nox-1的其他抗氧化系统可以弥补这种缺陷。