Yu Emma P K, Reinhold Johannes, Yu Haixiang, Starks Lakshi, Uryga Anna K, Foote Kirsty, Finigan Alison, Figg Nichola, Pung Yuh-Fen, Logan Angela, Murphy Michael P, Bennett Martin
From the Division of Cardiovascular Medicine, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, United Kingdom (E.P.K.Y., J.R., H.Y., L.S., A.K.U., K.F., A.F., N.F., M.B.); Department of Biomedical Sciences, University of Nottingham, Malaysia Campus, Selangor, Malaysia (Y.-F.P.); and MRC Mitochondrial Biology Unit, Cambridge, United Kingdom (A.L., M.P.M.).
Arterioscler Thromb Vasc Biol. 2017 Dec;37(12):2322-2332. doi: 10.1161/ATVBAHA.117.310042. Epub 2017 Sep 28.
Mitochondrial DNA (mtDNA) damage is present in murine and human atherosclerotic plaques. However, whether endogenous levels of mtDNA damage are sufficient to cause mitochondrial dysfunction and whether decreasing mtDNA damage and improving mitochondrial respiration affects plaque burden or composition are unclear. We examined mitochondrial respiration in human atherosclerotic plaques and whether augmenting mitochondrial respiration affects atherogenesis.
Human atherosclerotic plaques showed marked mitochondrial dysfunction, manifested as reduced mtDNA copy number and oxygen consumption rate in fibrous cap and core regions. Vascular smooth muscle cells derived from plaques showed impaired mitochondrial respiration, reduced complex I expression, and increased mitophagy, which was induced by oxidized low-density lipoprotein. Apolipoprotein E-deficient (ApoE) mice showed decreased mtDNA integrity and mitochondrial respiration, associated with increased mitochondrial reactive oxygen species. To determine whether alleviating mtDNA damage and increasing mitochondrial respiration affects atherogenesis, we studied ApoE mice overexpressing the mitochondrial helicase Twinkle (Tw/ApoE). Tw/ApoE mice showed increased mtDNA integrity, copy number, respiratory complex abundance, and respiration. Tw/ApoE mice had decreased necrotic core and increased fibrous cap areas, and Tw/ApoE bone marrow transplantation also reduced core areas. Twinkle increased vascular smooth muscle cell mtDNA integrity and respiration. Twinkle also promoted vascular smooth muscle cell proliferation and protected both vascular smooth muscle cells and macrophages from oxidative stress-induced apoptosis.
Endogenous mtDNA damage in mouse and human atherosclerosis is associated with significantly reduced mitochondrial respiration. Reducing mtDNA damage and increasing mitochondrial respiration decrease necrotic core and increase fibrous cap areas independently of changes in reactive oxygen species and may be a promising therapeutic strategy in atherosclerosis.
线粒体DNA(mtDNA)损伤存在于小鼠和人类动脉粥样硬化斑块中。然而,内源性mtDNA损伤水平是否足以导致线粒体功能障碍,以及降低mtDNA损伤和改善线粒体呼吸是否会影响斑块负荷或组成尚不清楚。我们研究了人类动脉粥样硬化斑块中的线粒体呼吸,以及增强线粒体呼吸是否会影响动脉粥样硬化的发生。
人类动脉粥样硬化斑块表现出明显的线粒体功能障碍,表现为纤维帽和核心区域的mtDNA拷贝数减少和氧消耗率降低。源自斑块的血管平滑肌细胞表现出线粒体呼吸受损、复合体I表达减少和线粒体自噬增加,这是由氧化型低密度脂蛋白诱导的。载脂蛋白E缺陷(ApoE)小鼠表现出mtDNA完整性和线粒体呼吸降低,与线粒体活性氧增加有关。为了确定减轻mtDNA损伤和增加线粒体呼吸是否会影响动脉粥样硬化的发生,我们研究了过表达线粒体解旋酶Twinkle(Tw/ApoE)的ApoE小鼠。Tw/ApoE小鼠表现出mtDNA完整性、拷贝数、呼吸复合体丰度和呼吸增加。Tw/ApoE小鼠的坏死核心面积减小,纤维帽面积增加,Tw/ApoE骨髓移植也减少了核心面积。Twinkle增加了血管平滑肌细胞的mtDNA完整性和呼吸。Twinkle还促进了血管平滑肌细胞增殖,并保护血管平滑肌细胞和巨噬细胞免受氧化应激诱导的凋亡。
小鼠和人类动脉粥样硬化中的内源性mtDNA损伤与线粒体呼吸显著降低有关。减少mtDNA损伤和增加线粒体呼吸可减少坏死核心并增加纤维帽面积,而与活性氧的变化无关,这可能是动脉粥样硬化中一种有前景的治疗策略。