Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Centre for Clinical Investigation, P.O. Box 110, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK.
Circulation. 2013 Aug 13;128(7):702-12. doi: 10.1161/CIRCULATIONAHA.113.002271. Epub 2013 Jul 10.
Mitochondrial DNA (mtDNA) damage occurs in both circulating cells and the vessel wall in human atherosclerosis. However, it is unclear whether mtDNA damage directly promotes atherogenesis or is a consequence of tissue damage, which cell types are involved, and whether its effects are mediated only through reactive oxygen species.
mtDNA damage occurred early in the vessel wall in apolipoprotein E-null (ApoE(-/-)) mice, before significant atherosclerosis developed. mtDNA defects were also identified in circulating monocytes and liver and were associated with mitochondrial dysfunction. To determine whether mtDNA damage directly promotes atherosclerosis, we studied ApoE(-/-) mice deficient for mitochondrial polymerase-γ proofreading activity (polG(-/-)/ApoE(-/-)). polG(-/-)/ApoE(-/-) mice showed extensive mtDNA damage and defects in oxidative phosphorylation but no increase in reactive oxygen species. polG(-/-)/ApoE(-/-) mice showed increased atherosclerosis, associated with impaired proliferation and apoptosis of vascular smooth muscle cells, and hyperlipidemia. Transplantation with polG(-/-)/ApoE(-/-) bone marrow increased the features of plaque vulnerability, and polG(-/-)/ApoE(-/-) monocytes showed increased apoptosis and inflammatory cytokine release. To examine mtDNA damage in human atherosclerosis, we assessed mtDNA adducts in plaques and in leukocytes from patients who had undergone virtual histology intravascular ultrasound characterization of coronary plaques. Human atherosclerotic plaques showed increased mtDNA damage compared with normal vessels; in contrast, leukocyte mtDNA damage was associated with higher-risk plaques but not plaque burden.
We show that mtDNA damage in vessel wall and circulating cells is widespread and causative and indicates higher risk in atherosclerosis. Protection against mtDNA damage and improvement of mitochondrial function are potential areas for new therapeutics.
线粒体 DNA(mtDNA)损伤既发生在人类动脉粥样硬化的循环细胞中,也发生在血管壁中。然而,尚不清楚 mtDNA 损伤是否直接促进动脉粥样硬化形成,或者它是否是组织损伤的结果,涉及哪些细胞类型,以及其影响是否仅通过活性氧物质介导。
载脂蛋白 E 基因敲除(ApoE(-/-))小鼠的血管壁中很早就出现了 mtDNA 损伤,而此时动脉粥样硬化尚未明显发生。还在循环单核细胞和肝脏中发现了 mtDNA 缺陷,并且与线粒体功能障碍相关。为了确定 mtDNA 损伤是否直接促进动脉粥样硬化形成,我们研究了缺乏线粒体聚合酶-γ校对活性(polG(-/-)/ApoE(-/-))的 ApoE(-/-) 小鼠。polG(-/-)/ApoE(-/-) 小鼠表现出广泛的 mtDNA 损伤和氧化磷酸化缺陷,但活性氧物质没有增加。polG(-/-)/ApoE(-/-) 小鼠表现出动脉粥样硬化的增加,与血管平滑肌细胞增殖和凋亡受损以及高脂血症相关。移植 polG(-/-)/ApoE(-/-) 骨髓增加了斑块易损性的特征,polG(-/-)/ApoE(-/-) 单核细胞表现出凋亡增加和炎症细胞因子释放增加。为了研究人类动脉粥样硬化中的 mtDNA 损伤,我们评估了虚拟组织学血管内超声特征化的冠状动脉斑块中的 mtDNA 加合物和患者白细胞中的 mtDNA 加合物。与正常血管相比,人类动脉粥样硬化斑块显示出增加的 mtDNA 损伤;相比之下,白细胞 mtDNA 损伤与高风险斑块相关,但与斑块负担无关。
我们表明,血管壁和循环细胞中的 mtDNA 损伤广泛且具有因果关系,表明动脉粥样硬化的风险更高。针对 mtDNA 损伤的保护和改善线粒体功能可能是新治疗方法的潜在领域。