Suppr超能文献

染色质重塑基因突变的功能影响及膀胱癌治疗反应的预测标志物。

Functional Impact of Chromatin Remodeling Gene Mutations and Predictive Signature for Therapeutic Response in Bladder Cancer.

机构信息

Department of Surgery (Urology), University of Colorado, Aurora, Colorado.

Department of Computer Science, Eastern Connecticut State University, Willimantic, Connecticut.

出版信息

Mol Cancer Res. 2018 Jan;16(1):69-77. doi: 10.1158/1541-7786.MCR-17-0260. Epub 2017 Oct 2.

Abstract

Urothelial carcinoma accounts for most of the bladder cancer cases. Using next-generation sequencing (NGS) technology, we found that a significant percentage (83%) of tumors had mutations in chromatin-remodeling genes. Here, we examined the functional relevance of mutations in two chromatin-remodeling genes, EP300 and its paralog, CREBBP, which are mutated in almost one-third of patients. Interestingly, almost half of missense mutations cluster in the histone-acetyltransferase (HAT) domain of EP300/CREBBP. This domain catalyzes the transfer of an acetyl group to target molecules such as histones, thereby regulating chromatin dynamics. Thus, patients with EP300 or CREBBP mutations may have alterations in the ability of the corresponding proteins to modify histone proteins and control transcriptional profiles. In fact, it was determined that many of the missense HAT mutations in EP300 (64%) and CREBBP (78%) were HAT-inactivating. These inactivating mutations also correlated with invasive disease in patients. Strikingly, the prediction software Mutation Assessor accurately predicted the functional consequences of each HAT missense mutation. Finally, a gene expression signature was developed that associated with loss of HAT activity and that this signature was associated with more aggressive cancer in four patient datasets. Further supporting the notion that this score accurately reflects HAT activity, we found it is responsive to treatment of cancer cells to mocetinostat, a histone deacetylase (HDAC) inhibitor. This study provides a rationale for targeted sequencing of EP300 and CREBBP and use of a gene profiling signature for predicting therapeutic response in patients. .

摘要

尿路上皮癌占膀胱癌病例的大部分。我们使用下一代测序(NGS)技术发现,相当大比例(83%)的肿瘤存在染色质重塑基因的突变。在这里,我们研究了两个染色质重塑基因 EP300 和其同源物 CREBBP 中突变的功能相关性,这两个基因在近三分之一的患者中发生突变。有趣的是,近一半的错义突变聚集在 EP300/CREBBP 的组蛋白乙酰转移酶(HAT)结构域中。该结构域催化乙酰基转移到靶分子如组蛋白上,从而调节染色质动力学。因此,EP300 或 CREBBP 突变的患者可能会改变相应蛋白修饰组蛋白和控制转录谱的能力。事实上,确定 EP300(64%)和 CREBBP(78%)中的许多错义 HAT 突变是 HAT 失活的。这些失活突变也与患者的侵袭性疾病相关。引人注目的是,突变评估软件 Mutation Assessor 准确预测了每个 HAT 错义突变的功能后果。最后,开发了一个与 HAT 活性丧失相关的基因表达特征,并且该特征与四个患者数据集的侵袭性癌症相关。进一步支持该评分准确反映 HAT 活性的观点,我们发现它对 mocetinostat(一种组蛋白去乙酰化酶(HDAC)抑制剂)治疗癌细胞是有反应的。这项研究为 EP300 和 CREBBP 的靶向测序以及使用基因谱特征预测患者的治疗反应提供了依据。

相似文献

1
Functional Impact of Chromatin Remodeling Gene Mutations and Predictive Signature for Therapeutic Response in Bladder Cancer.
Mol Cancer Res. 2018 Jan;16(1):69-77. doi: 10.1158/1541-7786.MCR-17-0260. Epub 2017 Oct 2.
2
Chromatin-regulatory genes served as potential therapeutic targets for patients with urothelial bladder carcinoma.
J Cell Physiol. 2019 May;234(5):6976-6982. doi: 10.1002/jcp.27440. Epub 2018 Oct 14.
5
Somatic mutations of the CREBBP and EP300 genes affect response to histone deacetylase inhibition in malignant DLBCL clones.
Leuk Res Rep. 2012 Dec 8;2(1):1-3. doi: 10.1016/j.lrr.2012.10.002. eCollection 2012.
8
Inactivating mutations in SWI/SNF chromatin remodeling genes in human cancer.
Jpn J Clin Oncol. 2013 Sep;43(9):849-55. doi: 10.1093/jjco/hyt101. Epub 2013 Jul 30.
10
Recurrent Mutations of Chromatin-Remodeling Genes and Kinase Receptors in Pheochromocytomas and Paragangliomas.
Clin Cancer Res. 2016 May 1;22(9):2301-10. doi: 10.1158/1078-0432.CCR-15-1841. Epub 2015 Dec 23.

引用本文的文献

2
Genetic dysregulation of EP300 in cancers in light of cancer epigenome control - targeting of p300-proficient and -deficient cancers.
Mol Ther Oncol. 2024 Sep 2;32(4):200871. doi: 10.1016/j.omton.2024.200871. eCollection 2024 Dec 19.
3
Epigenetic and Immunological Features of Bladder Cancer.
Int J Mol Sci. 2023 Jun 7;24(12):9854. doi: 10.3390/ijms24129854.
7
Alterations of Chromatin Regulators in the Pathogenesis of Urinary Bladder Urothelial Carcinoma.
Cancers (Basel). 2021 Nov 30;13(23):6040. doi: 10.3390/cancers13236040.
8
The landscape of driver mutations in cutaneous squamous cell carcinoma.
NPJ Genom Med. 2021 Jul 16;6(1):61. doi: 10.1038/s41525-021-00226-4.
10
Building a Canadian Translational Bladder Cancer Research Network.
Can Urol Assoc J. 2020 Oct;14(10):E475-E481. doi: 10.5489/cuaj.6887.

本文引用的文献

1
The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible.
Nucleic Acids Res. 2017 Jan 4;45(D1):D362-D368. doi: 10.1093/nar/gkw937. Epub 2016 Oct 18.
2
Cancer statistics, 2016.
CA Cancer J Clin. 2016 Jan-Feb;66(1):7-30. doi: 10.3322/caac.21332. Epub 2016 Jan 7.
3
Induction of USP17 by combining BET and HDAC inhibitors in breast cancer cells.
Oncotarget. 2015 Oct 20;6(32):33623-35. doi: 10.18632/oncotarget.5601.
4
ELK1 is up-regulated by androgen in bladder cancer cells and promotes tumor progression.
Oncotarget. 2015 Oct 6;6(30):29860-76. doi: 10.18632/oncotarget.5007.
6
COSMIC: exploring the world's knowledge of somatic mutations in human cancer.
Nucleic Acids Res. 2015 Jan;43(Database issue):D805-11. doi: 10.1093/nar/gku1075. Epub 2014 Oct 29.
8
Genomic predictors of survival in patients with high-grade urothelial carcinoma of the bladder.
Eur Urol. 2015 Feb;67(2):198-201. doi: 10.1016/j.eururo.2014.06.050. Epub 2014 Aug 1.
9
Structure of the p300 histone acetyltransferase bound to acetyl-coenzyme A and its analogues.
Biochemistry. 2014 Jun 3;53(21):3415-22. doi: 10.1021/bi500380f. Epub 2014 May 21.
10
Comprehensive molecular characterization of urothelial bladder carcinoma.
Nature. 2014 Mar 20;507(7492):315-22. doi: 10.1038/nature12965. Epub 2014 Jan 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验