Suppr超能文献

长期联想学习可预测言语短期记忆表现。

Long-term associative learning predicts verbal short-term memory performance.

作者信息

Jones Gary, Macken Bill

机构信息

Department of Psychology, Nottingham Trent University, 50 Shakespeare Street, Nottingham, NG1 4FQ, UK.

School of Psychology, Cardiff University, Cardiff, UK.

出版信息

Mem Cognit. 2018 Feb;46(2):216-229. doi: 10.3758/s13421-017-0759-3.

Abstract

Studies using tests such as digit span and nonword repetition have implicated short-term memory across a range of developmental domains. Such tests ostensibly assess specialized processes for the short-term manipulation and maintenance of information that are often argued to enable long-term learning. However, there is considerable evidence for an influence of long-term linguistic learning on performance in short-term memory tasks that brings into question the role of a specialized short-term memory system separate from long-term knowledge. Using natural language corpora, we show experimentally and computationally that performance on three widely used measures of short-term memory (digit span, nonword repetition, and sentence recall) can be predicted from simple associative learning operating on the linguistic environment to which a typical child may have been exposed. The findings support the broad view that short-term verbal memory performance reflects the application of long-term language knowledge to the experimental setting.

摘要

使用数字广度和非词重复等测试的研究表明,短期记忆在一系列发展领域中都有涉及。这类测试表面上评估的是信息短期操作和维持的专门过程,人们通常认为这些过程有助于长期学习。然而,有大量证据表明长期语言学习会影响短期记忆任务的表现,这使得一个独立于长期知识的专门短期记忆系统的作用受到质疑。通过使用自然语言语料库,我们通过实验和计算表明,三种广泛使用的短期记忆测量方法(数字广度、非词重复和句子回忆)的表现可以从作用于典型儿童可能接触过的语言环境的简单联想学习中预测出来。这些发现支持了这样一种广泛的观点,即短期言语记忆表现反映了长期语言知识在实验环境中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验