Suppr超能文献

封装在纳米基质凝胶中的人多能干细胞衍生内皮细胞的增强治疗和长期动态血管化作用

Enhanced Therapeutic and Long-Term Dynamic Vascularization Effects of Human Pluripotent Stem Cell-Derived Endothelial Cells Encapsulated in a Nanomatrix Gel.

作者信息

Lee Shin-Jeong, Sohn Young-Doug, Andukuri Adinarayana, Kim Sangsung, Byun Jaemin, Han Ji Woong, Park In-Hyun, Jun Ho-Wook, Yoon Young-Sup

机构信息

Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.-J.L., Y.-D.S., A.A., S.K., J.B., J.W.H., Y.-S.Y.).

Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea (S.-J.L., Y.-S.Y.).

出版信息

Circulation. 2017 Nov 14;136(20):1939-1954. doi: 10.1161/CIRCULATIONAHA.116.026329. Epub 2017 Sep 29.

Abstract

BACKGROUND

Human pluripotent stem cell (hPSC)-derived endothelial cells (ECs) have limited clinical utility because of undefined components in the differentiation system and poor cell survival in vivo. Here, we aimed to develop a fully defined and clinically compatible system to differentiate hPSCs into ECs. Furthermore, we aimed to enhance cell survival, vessel formation, and therapeutic potential by encapsulating hPSC-ECs with a peptide amphiphile (PA) nanomatrix gel.

METHODS

We induced differentiation of hPSCs into the mesodermal lineage by culturing on collagen-coated plates with a glycogen synthase kinase 3β inhibitor. Next, vascular endothelial growth factor, endothelial growth factor, and basic fibroblast growth factor were added for endothelial lineage differentiation, followed by sorting for CDH5 (VE-cadherin). We constructed an extracellular matrix-mimicking PA nanomatrix gel (PA-RGDS) by incorporating the cell adhesive ligand Arg-Gly-Asp-Ser (RGDS) and a matrix metalloproteinase-2-degradable sequence. We then evaluated whether the encapsulation of hPSC-CDH5 cells in PA-RGDS could enhance long-term cell survival and vascular regenerative effects in a hind-limb ischemia model with laser Doppler perfusion imaging, bioluminescence imaging, real-time reverse transcription-polymerase chain reaction, and histological analysis.

RESULTS

The resultant hPSC-derived CDH5 cells (hPSC-ECs) showed highly enriched and genuine EC characteristics and proangiogenic activities. When injected into ischemic hind limbs, hPSC-ECs showed better perfusion recovery and higher vessel-forming capacity compared with media-, PA-RGDS-, or human umbilical vein EC-injected groups. However, the group receiving the PA-RGDS-encapsulated hPSC-ECs showed better perfusion recovery, more robust and longer cell survival (> 10 months), and higher and prolonged angiogenic and vascular incorporation capabilities than the bare hPSC-EC-injected group. Surprisingly, the engrafted hPSC-ECs demonstrated previously unknown sustained and dynamic vessel-forming behavior: initial perivascular concentration, a guiding role for new vessel formation, and progressive incorporation into the vessels over 10 months.

CONCLUSIONS

We generated highly enriched hPSC-ECs via a clinically compatible system. Furthermore, this study demonstrated that a biocompatible PA-RGDS nanomatrix gel substantially improved long-term survival of hPSC-ECs in an ischemic environment and improved neovascularization effects of hPSC-ECs via prolonged and unique angiogenic and vessel-forming properties. This PA-RGDS-mediated transplantation of hPSC-ECs can serve as a novel platform for cell-based therapy and investigation of long-term behavior of hPSC-ECs.

摘要

背景

人多能干细胞(hPSC)来源的内皮细胞(EC)在临床应用中存在局限性,原因是分化系统中的成分不明确以及体内细胞存活率低。在此,我们旨在开发一种完全明确且临床兼容的系统,将hPSC分化为EC。此外,我们旨在通过用肽两亲物(PA)纳米基质凝胶包裹hPSC-EC来提高细胞存活率、血管形成能力和治疗潜力。

方法

我们通过在涂有胶原蛋白的平板上培养并添加糖原合酶激酶3β抑制剂,将hPSC诱导分化为中胚层谱系。接下来,添加血管内皮生长因子、内皮生长因子和碱性成纤维细胞生长因子以促进内皮谱系分化,随后对CDH5(血管内皮钙黏蛋白)进行分选。我们通过掺入细胞黏附配体精氨酸-甘氨酸-天冬氨酸-丝氨酸(RGDS)和基质金属蛋白酶-2可降解序列,构建了一种模拟细胞外基质的PA纳米基质凝胶(PA-RGDS)。然后,我们使用激光多普勒灌注成像、生物发光成像、实时逆转录-聚合酶链反应和组织学分析,评估在PA-RGDS中包裹hPSC-CDH5细胞是否能增强后肢缺血模型中的长期细胞存活率和血管再生效果。

结果

所得的hPSC来源的CDH5细胞(hPSC-EC)表现出高度富集且真实的EC特征和促血管生成活性。与注射培养基、PA-RGDS或人脐静脉EC的组相比,将hPSC-EC注射到缺血后肢时,显示出更好的灌注恢复和更高的血管形成能力。然而,接受PA-RGDS包裹的hPSC-EC的组比单纯注射hPSC-EC的组表现出更好的灌注恢复、更强且更持久的细胞存活(>10个月)以及更高且更持久的血管生成和血管整合能力。令人惊讶的是,移植的hPSC-EC表现出先前未知的持续且动态的血管形成行为:最初在血管周围聚集,对新血管形成起引导作用,并在10个月内逐渐整合到血管中。

结论

我们通过临床兼容的系统生成了高度富集的hPSC-EC。此外,本研究表明,生物相容性PA-RGDS纳米基质凝胶可显著提高hPSC-EC在缺血环境中的长期存活率,并通过延长且独特的血管生成和血管形成特性改善hPSC-EC的新生血管形成效果。这种PA-RGDS介导的hPSC-EC移植可作为基于细胞的治疗以及研究hPSC-EC长期行为的新型平台。

相似文献

2
Xenografted human amniotic fluid-derived stem cell as a cell source in therapeutic angiogenesis.
Int J Cardiol. 2013 Sep 20;168(1):66-75. doi: 10.1016/j.ijcard.2012.09.072. Epub 2012 Oct 6.
7
Generation of Human Pluripotent Stem Cell-derived Endothelial Cells and Their Therapeutic Utility.
Curr Cardiol Rep. 2018 May 5;20(6):45. doi: 10.1007/s11886-018-0985-8.
10
Direct Reprogramming of Human Dermal Fibroblasts Into Endothelial Cells Using ER71/ETV2.
Circ Res. 2017 Mar 3;120(5):848-861. doi: 10.1161/CIRCRESAHA.116.309833. Epub 2016 Dec 21.

引用本文的文献

2
Novel Directly Reprogrammed Smooth Muscle Cells Promote Vascular Regeneration as Microvascular Mural Cells.
Circulation. 2025 Apr 15;151(15):1076-1094. doi: 10.1161/CIRCULATIONAHA.124.070217. Epub 2025 Feb 13.
3
Human iPSC-Derived Endothelial Cells Exhibit Reduced Immunogenicity in Comparison With Human Primary Endothelial Cells.
Stem Cells Int. 2024 Dec 9;2024:6153235. doi: 10.1155/sci/6153235. eCollection 2024.
4
Hydrogel in the Treatment of Traumatic Brain Injury.
Biomater Res. 2024 Sep 26;28:0085. doi: 10.34133/bmr.0085. eCollection 2024.
6
Generation of Directly Reprogrammed Human Endothelial Cells.
Methods Mol Biol. 2024;2835:155-164. doi: 10.1007/978-1-0716-3995-5_14.
7
Generation of Autologous Vascular Endothelial Cells for Patients with Peripheral Artery Disease.
J Cardiovasc Transl Res. 2024 Jun;17(3):558-569. doi: 10.1007/s12265-023-10452-z. Epub 2023 Oct 20.
9
Endothelial cell direct reprogramming: Past, present, and future.
J Mol Cell Cardiol. 2023 Jul;180:22-32. doi: 10.1016/j.yjmcc.2023.04.006. Epub 2023 Apr 18.
10
Generation and Application of Directly Reprogrammed Endothelial Cells.
Korean Circ J. 2022 Sep;52(9):643-658. doi: 10.4070/kcj.2022.0190.

本文引用的文献

2
Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells.
Nat Cell Biol. 2015 Aug;17(8):994-1003. doi: 10.1038/ncb3205. Epub 2015 Jul 27.
5
The modulation of cardiac progenitor cell function by hydrogel-dependent Notch1 activation.
Biomaterials. 2014 Sep;35(28):8103-12. doi: 10.1016/j.biomaterials.2014.05.082. Epub 2014 Jun 25.
7
Purification of cardiomyocytes from differentiating pluripotent stem cells using molecular beacons that target cardiomyocyte-specific mRNA.
Circulation. 2013 Oct 22;128(17):1897-909. doi: 10.1161/CIRCULATIONAHA.113.004228. Epub 2013 Aug 30.
8
Molecular imaging of bone marrow mononuclear cell survival and homing in murine peripheral artery disease.
JACC Cardiovasc Imaging. 2012 Jan;5(1):46-55. doi: 10.1016/j.jcmg.2011.07.011.
10
Biomaterials to enhance stem cell function in the heart.
Circ Res. 2011 Sep 30;109(8):910-22. doi: 10.1161/CIRCRESAHA.111.249052.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验