Suppr超能文献

白蛋白模板仿生复合纳米粒子的生长作为智能纳米诊疗用于增强肿瘤的放射治疗。

Albumin-templated biomineralizing growth of composite nanoparticles as smart nano-theranostics for enhanced radiotherapy of tumors.

机构信息

Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.

出版信息

Nanoscale. 2017 Oct 12;9(39):14826-14835. doi: 10.1039/c7nr05316a.

Abstract

Hypoxia and a dense extracellular matrix within the tumor microenvironment can often lead to the resistance of tumors to radiotherapy. Herein, we use bovine serum albumin (BSA) as a template to induce the growth of both gold (Au) nanoclusters and manganese dioxide (MnO) via biomineralization. In the obtained BSA-Au-MnO composite nanoparticles, Au nanoclusters embedded within BSA not only show strong red fluorescence to facilitate imaging, but also act as a radio-sensitizer by absorbing and depositing X-ray energy within tumors to enhance radiotherapy. Meanwhile, the MnO core, which enables the formation of composite nanoparticles by connecting multiple albumins together, is able to modulate the tumor hypoxia by triggering the decomposition of tumor endogenous HO into oxygen, so as to reverse the hypoxia-associated radiation resistance of tumors. Notably, such BSA-Au-MnO composite nanoparticles with larger sizes show prolonged blood circulation and increased tumor accumulation compared to BSA-Au complexes, and would dissociate back into individual BSA-Au complexes once inside the tumor with reduced pH to allow deep interstitial diffusion. As a result, highly effective radiotherapy of tumors is realized with these nanoparticles in a mouse tumor model. Our work thus presents a convenient biomineralization approach to fabricate intelligent multifunctional nanoparticles composed of biocompatible/biodegradable components for enhanced cancer therapy.

摘要

缺氧和肿瘤微环境中密集的细胞外基质常常导致肿瘤对放射治疗产生抵抗。在此,我们使用牛血清白蛋白(BSA)作为模板,通过生物矿化诱导金(Au)纳米团簇和二氧化锰(MnO)的生长。在得到的 BSA-Au-MnO 复合纳米粒子中,嵌入 BSA 内的 Au 纳米团簇不仅表现出强的红色荧光以利于成像,而且还通过吸收和沉积肿瘤内的 X 射线能量来充当放射增敏剂,以增强放射治疗。同时,MnO 核能够通过连接多个白蛋白形成复合纳米粒子,从而调节肿瘤缺氧,通过触发肿瘤内源性 HO 分解为氧气来逆转肿瘤相关的辐射抗性。值得注意的是,与 BSA-Au 配合物相比,具有较大尺寸的 BSA-Au-MnO 复合纳米粒子表现出延长的血液循环和增加的肿瘤积累,并且一旦进入肿瘤内 pH 值降低,就会解离回单个 BSA-Au 配合物,以允许深部间质扩散。因此,在小鼠肿瘤模型中,这些纳米粒子实现了高效的肿瘤放射治疗。我们的工作因此提出了一种方便的生物矿化方法,用于构建由生物相容性/可生物降解成分组成的智能多功能纳米粒子,以增强癌症治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验