Suppr超能文献

一种提高医学和生态数据库空间互操作性的通用方法。

A generic method for improving the spatial interoperability of medical and ecological databases.

机构信息

EA 2694 - Santé publique : épidémiologie et qualité des soins, University of Lille, 59000, Lille, France.

Department of Public Health, CHU Lille, 59000, Lille, France.

出版信息

Int J Health Geogr. 2017 Oct 3;16(1):36. doi: 10.1186/s12942-017-0109-5.

Abstract

BACKGROUND

The availability of big data in healthcare and the intensive development of data reuse and georeferencing have opened up perspectives for health spatial analysis. However, fine-scale spatial studies of ecological and medical databases are limited by the change of support problem and thus a lack of spatial unit interoperability. The use of spatial disaggregation methods to solve this problem introduces errors into the spatial estimations. Here, we present a generic, two-step method for merging medical and ecological databases that avoids the use of spatial disaggregation methods, while maximizing the spatial resolution.

METHODS

Firstly, a mapping table is created after one or more transition matrices have been defined. The latter link the spatial units of the original databases to the spatial units of the final database. Secondly, the mapping table is validated by (1) comparing the covariates contained in the two original databases, and (2) checking the spatial validity with a spatial continuity criterion and a spatial resolution index.

RESULTS

We used our novel method to merge a medical database (the French national diagnosis-related group database, containing 5644 spatial units) with an ecological database (produced by the French National Institute of Statistics and Economic Studies, and containing with 36,594 spatial units). The mapping table yielded 5632 final spatial units. The mapping table's validity was evaluated by comparing the number of births in the medical database and the ecological databases in each final spatial unit. The median [interquartile range] relative difference was 2.3% [0; 5.7]. The spatial continuity criterion was low (2.4%), and the spatial resolution index was greater than for most French administrative areas.

CONCLUSIONS

Our innovative approach improves interoperability between medical and ecological databases and facilitates fine-scale spatial analyses. We have shown that disaggregation models and large aggregation techniques are not necessarily the best ways to tackle the change of support problem.

摘要

背景

医疗保健领域大数据的可用性以及数据再利用和地理参考的深入发展为健康空间分析开辟了新的视角。然而,生态和医疗数据库的细尺度空间研究受到支持变化问题的限制,因此缺乏空间单元的互操作性。使用空间离散化方法来解决这个问题会给空间估计带来误差。在这里,我们提出了一种通用的、两步法来合并医疗和生态数据库,避免使用空间离散化方法,同时最大限度地提高空间分辨率。

方法

首先,在定义了一个或多个转换矩阵之后,创建一个映射表。后者将原始数据库的空间单元与最终数据库的空间单元联系起来。其次,通过(1)比较两个原始数据库中包含的协变量,以及(2)通过空间连续性标准和空间分辨率指数检查空间有效性来验证映射表。

结果

我们使用我们的新方法将一个医疗数据库(包含 5644 个空间单元的法国国家诊断相关组数据库)与一个生态数据库(由法国国家统计与经济研究所编制,包含 36594 个空间单元)合并。映射表产生了 5632 个最终的空间单元。通过比较每个最终空间单元中医疗数据库和生态数据库中的出生人数来评估映射表的有效性。中位数[四分位距]的相对差异为 2.3%[0; 5.7]。空间连续性标准较低(2.4%),空间分辨率指数大于大多数法国行政区。

结论

我们的创新方法提高了医疗和生态数据库之间的互操作性,并且方便了细尺度空间分析。我们已经表明,离散化模型和大规模聚合技术不一定是解决支持变化问题的最佳方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd2b/5627422/2c5beca23cc0/12942_2017_109_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验