Goungounga Juste Aristide, Gaudart Jean, Colonna Marc, Giorgi Roch
Aix Marseille University, INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, Marseille, France.
APHM, Hôpital de la Timone, Service Biostatistique et Technologies de l'Information et de la Communication, Marseille, France.
BMC Med Res Methodol. 2016 Oct 12;16(1):136. doi: 10.1186/s12874-016-0228-x.
The reliability of spatial statistics is often put into question because real spatial variations may not be found, especially in heterogeneous areas. Our objective was to compare empirically different cluster detection methods. We assessed their ability to find spatial clusters of cancer cases and evaluated the impact of the socioeconomic status (e.g., the Townsend index) on cancer incidence.
Moran's I, the empirical Bayes index (EBI), and Potthoff-Whittinghill test were used to investigate the general clustering. The local cluster detection methods were: i) the spatial oblique decision tree (SpODT); ii) the spatial scan statistic of Kulldorff (SaTScan); and, iii) the hierarchical Bayesian spatial modeling (HBSM) in a univariate and multivariate setting. These methods were used with and without introducing the Townsend index of socioeconomic deprivation known to be related to the distribution of cancer incidence. Incidence data stemmed from the Cancer Registry of Isère and were limited to prostate, lung, colon-rectum, and bladder cancers diagnosed between 1999 and 2007 in men only.
The study found a spatial heterogeneity (p < 0.01) and an autocorrelation for prostate (EBI = 0.02; p = 0.001), lung (EBI = 0.01; p = 0.019) and bladder (EBI = 0.007; p = 0.05) cancers. After introduction of the Townsend index, SaTScan failed in finding cancers clusters. This introduction changed the results obtained with the other methods. SpODT identified five spatial classes (p < 0.05): four in the Western and one in the Northern parts of the study area (standardized incidence ratios: 1.68, 1.39, 1.14, 1.12, and 1.16, respectively). In the univariate setting, the Bayesian smoothing method found the same clusters as the two other methods (RR >1.2). The multivariate HBSM found a spatial correlation between lung and bladder cancers (r = 0.6).
In spatial analysis of cancer incidence, SpODT and HBSM may be used not only for cluster detection but also for searching for confounding or etiological factors in small areas. Moreover, the multivariate HBSM offers a flexible and meaningful modeling of spatial variations; it shows plausible previously unknown associations between various cancers.
空间统计的可靠性常常受到质疑,因为可能找不到实际的空间变异,尤其是在异质性区域。我们的目的是通过实证比较不同的聚类检测方法。我们评估了它们发现癌症病例空间聚类的能力,并评估了社会经济地位(如汤森指数)对癌症发病率的影响。
使用莫兰指数(Moran's I)、经验贝叶斯指数(EBI)和波特霍夫 - 惠廷希尔检验(Potthoff-Whittinghill test)来研究总体聚类情况。局部聚类检测方法包括:i)空间倾斜决策树(SpODT);ii)库尔道尔夫空间扫描统计量(SaTScan);iii)单变量和多变量设置下的分层贝叶斯空间建模(HBSM)。这些方法在引入和未引入已知与癌症发病率分布相关的社会经济剥夺汤森指数的情况下使用。发病率数据源自伊泽尔省癌症登记处,仅限于1999年至2007年间仅在男性中诊断出的前列腺癌、肺癌、结直肠癌和膀胱癌。
研究发现前列腺癌(EBI = 0.02;p = 0.001)、肺癌(EBI = 0.****;p = 0.019)和膀胱癌(EBI = 0.007;p = 0.05)存在空间异质性(p < 0.01)和自相关性。引入汤森指数后,SaTScan未能发现癌症聚类。这种引入改变了其他方法得到的结果。SpODT识别出五个空间类别(p < ****):研究区域西部有四个,北部有一个(标准化发病率分别为:1.68、1.39、1.14、1.12和1.16)。在单变量设置下,贝叶斯平滑方法发现的聚类与其他两种方法相同(相对风险>1.2)。多变量HBSM发现肺癌和膀胱癌之间存在空间相关性(r = 0.6)。
在癌症发病率的空间分析中,SpODT和HBSM不仅可用于聚类检测,还可用于在小区域内寻找混杂因素或病因因素。此外,多变量HBSM提供了一种灵活且有意义的空间变异建模方法;它显示了各种癌症之间可能存在的先前未知的关联。