Suppr超能文献

糖尿病自我管理中的个人发现:使用自我监测数据发现因果关系。

Personal discovery in diabetes self-management: Discovering cause and effect using self-monitoring data.

机构信息

Department of Biomedical Informatics, Columbia University, United States.

School of Nursing, Columbia University, United States.

出版信息

J Biomed Inform. 2017 Dec;76:1-8. doi: 10.1016/j.jbi.2017.09.013. Epub 2017 Sep 30.

Abstract

OBJECTIVE

To outline new design directions for informatics solutions that facilitate personal discovery with self-monitoring data. We investigate this question in the context of chronic disease self-management with the focus on type 2 diabetes.

MATERIALS AND METHODS

We conducted an observational qualitative study of discovery with personal data among adults attending a diabetes self-management education (DSME) program that utilized a discovery-based curriculum. The study included observations of class sessions, and interviews and focus groups with the educator and attendees of the program (n = 14).

RESULTS

The main discovery in diabetes self-management evolved around discovering patterns of association between characteristics of individuals' activities and changes in their blood glucose levels that the participants referred to as "cause and effect". This discovery empowered individuals to actively engage in self-management and provided a desired flexibility in selection of personalized self-management strategies. We show that discovery of cause and effect involves four essential phases: (1) feature selection, (2) hypothesis generation, (3) feature evaluation, and (4) goal specification. Further, we identify opportunities to support discovery at each stage with informatics and data visualization solutions by providing assistance with: (1) active manipulation of collected data (e.g., grouping, filtering and side-by-side inspection), (2) hypotheses formulation (e.g., using natural language statements or constructing visual queries), (3) inference evaluation (e.g., through aggregation and visual comparison, and statistical analysis of associations), and (4) translation of discoveries into actionable goals (e.g., tailored selection from computable knowledge sources of effective diabetes self-management behaviors).

DISCUSSION

The study suggests that discovery of cause and effect in diabetes can be a powerful approach to helping individuals to improve their self-management strategies, and that self-monitoring data can serve as a driving engine for personal discovery that may lead to sustainable behavior changes.

CONCLUSIONS

Enabling personal discovery is a promising new approach to enhancing chronic disease self-management with informatics interventions.

摘要

目的

概述便于利用自我监测数据进行个人发现的信息学解决方案的新设计方向。我们以 2 型糖尿病为重点,在慢性病自我管理的背景下研究这个问题。

材料与方法

我们对利用基于发现的课程的糖尿病自我管理教育(DSME)计划中的成年人进行了一项关于个人数据发现的观察性定性研究。该研究包括观察课程,以及对教育者和计划参与者(n=14)的访谈和焦点小组。

结果

糖尿病自我管理的主要发现是围绕着发现个人活动特征与血糖变化之间关联模式展开的,参与者将这些关联模式称为“因果关系”。这种发现使个人能够积极参与自我管理,并为选择个性化自我管理策略提供了所需的灵活性。我们表明,因果关系的发现涉及四个基本阶段:(1)特征选择,(2)假设生成,(3)特征评估,和(4)目标指定。此外,我们通过提供以下方面的帮助来确定在每个阶段支持发现的机会:(1)对收集到的数据进行主动操作(例如,分组、过滤和并排检查),(2)假设形成(例如,使用自然语言语句或构建可视化查询),(3)推断评估(例如,通过聚合和可视化比较以及关联的统计分析),和(4)将发现转化为可操作的目标(例如,从可计算的有效糖尿病自我管理行为的知识源中进行定制选择)。

讨论

该研究表明,在糖尿病中发现因果关系可能是帮助个人改善自我管理策略的有力方法,并且自我监测数据可以作为个人发现的驱动引擎,从而可能导致可持续的行为改变。

结论

启用个人发现是一种有前途的新方法,可以通过信息学干预来增强慢性病自我管理。

相似文献

1
Personal discovery in diabetes self-management: Discovering cause and effect using self-monitoring data.
J Biomed Inform. 2017 Dec;76:1-8. doi: 10.1016/j.jbi.2017.09.013. Epub 2017 Sep 30.
3
Making sense of blood glucose data and self-management in individuals with type 2 diabetes mellitus: A qualitative study.
J Clin Nurs. 2020 Jul;29(13-14):2572-2588. doi: 10.1111/jocn.15280. Epub 2020 Apr 27.
5
Adapting the stage-based model of personal informatics for low-resource communities in the context of type 2 diabetes.
J Biomed Inform. 2020 Oct;110:103572. doi: 10.1016/j.jbi.2020.103572. Epub 2020 Sep 20.
6
Sustaining short-term improvements over the long-term: results from a 2-year diabetes self-management support (DSMS) intervention.
Diabetes Res Clin Pract. 2012 Jan;95(1):85-92. doi: 10.1016/j.diabres.2011.04.003. Epub 2011 Aug 27.
7
Designing for engagement with self-monitoring: A user-centered approach with low-income, Latino adults with Type 2 Diabetes.
Int J Med Inform. 2019 Oct;130:103941. doi: 10.1016/j.ijmedinf.2019.08.001. Epub 2019 Aug 2.
8
Who can provide diabetes self-management support in primary care? Findings from a randomized controlled trial.
Diabetes Educ. 2013 Sep-Oct;39(5):705-13. doi: 10.1177/0145721713492570. Epub 2013 Jun 19.
9
Behavioural interventions for type 2 diabetes: an evidence-based analysis.
Ont Health Technol Assess Ser. 2009;9(21):1-45. Epub 2009 Oct 1.
10
A Culturally Appropriate Self-Management Program for Hispanic Adults With Type 2 Diabetes and Low Health Literacy Skills.
J Transcult Nurs. 2017 Mar;28(2):187-194. doi: 10.1177/1043659615613418. Epub 2016 Jul 9.

引用本文的文献

5
MigraineTracker: Examining Patient Experiences with Goal-Directed Self-Tracking for a Chronic Health Condition.
Proc SIGCHI Conf Hum Factor Comput Syst. 2024 May;2024. doi: 10.1145/3613904.3642075. Epub 2024 May 11.
7
A qualitative study of blood glucose and side effect self-management among patients with type 2 diabetes undergoing chemotherapy for cancer.
Asia Pac J Oncol Nurs. 2022 Dec 6;10(2):100172. doi: 10.1016/j.apjon.2022.100172. eCollection 2023 Feb.
10
Examining Opportunities for Goal-Directed Self-Tracking to Support Chronic Condition Management.
Proc ACM Interact Mob Wearable Ubiquitous Technol. 2019 Dec;3(4). doi: 10.1145/3369809.

本文引用的文献

1
Personalized glucose forecasting for type 2 diabetes using data assimilation.
PLoS Comput Biol. 2017 Apr 27;13(4):e1005232. doi: 10.1371/journal.pcbi.1005232. eCollection 2017 Apr.
4
Data-driven health management: reasoning about personally generated data in diabetes with information technologies.
J Am Med Inform Assoc. 2016 May;23(3):526-31. doi: 10.1093/jamia/ocv187. Epub 2016 Mar 16.
6
Structured scaffolding for reflection and problem solving in diabetes self-management: qualitative study of mobile diabetes detective.
J Am Med Inform Assoc. 2016 Jan;23(1):129-36. doi: 10.1093/jamia/ocv169. Epub 2016 Jan 14.
7
Patient-generated health data: a pathway to enhanced long-term cancer survivorship.
J Am Med Inform Assoc. 2016 May;23(3):456-61. doi: 10.1093/jamia/ocv184. Epub 2015 Dec 29.
8
A framework for self-experimentation in personalized health.
J Am Med Inform Assoc. 2016 May;23(3):440-8. doi: 10.1093/jamia/ocv150. Epub 2015 Dec 7.
9
Participatory approach to the development of a knowledge base for problem-solving in diabetes self-management.
Int J Med Inform. 2016 Jan;85(1):96-103. doi: 10.1016/j.ijmedinf.2015.08.003. Epub 2015 Aug 8.
10
Learning probabilistic phenotypes from heterogeneous EHR data.
J Biomed Inform. 2015 Dec;58:156-165. doi: 10.1016/j.jbi.2015.10.001. Epub 2015 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验