Hoang Chung V, Hayashi Koki, Ito Yasuo, Gorai Naoki, Allison Giles, Shi Xu, Sun Quan, Cheng Zhenzhou, Ueno Kosei, Goda Keisuke, Misawa Hiroaki
IMRA Japan Co., Ltd., Sapporo, 004-0015, Japan.
Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
Nat Commun. 2017 Oct 3;8(1):771. doi: 10.1038/s41467-017-00815-x.
Plasmon-induced hot-electron generation has recently received considerable interest and has been studied to develop novel applications in optoelectronics, photovoltaics and green chemistry. Such hot electrons are typically generated from either localized plasmons in metal nanoparticles or propagating plasmons in patterned metal nanostructures. Here we simultaneously generate these heterogeneous plasmon-induced hot electrons and exploit their cooperative interplay in a single metal-semiconductor device to demonstrate, as an example, wavelength-controlled polarity-switchable photoconductivity. Specifically, the dual-plasmon device produces a net photocurrent whose polarity is determined by the balance in population and directionality between the hot electrons from localized and propagating plasmons. The current responsivity and polarity-switching wavelength of the device can be varied over the entire visible spectrum by tailoring the hot-electron interplay in various ways. This phenomenon may provide flexibility to manipulate the electrical output from light-matter interaction and offer opportunities for biosensors, long-distance communications, and photoconversion applications.Plasmon-induced hot electrons have potential applications spanning photodetection and photocatalysis. Here, Hoang et al. study the interplay between hot electrons generated by localized and propagating plasmons, and demonstrate wavelength-controlled polarity-switchable photoconductivity.
表面等离激元诱导热电子的产生近来备受关注,并已被研究用于开发光电子学、光伏和绿色化学等领域的新型应用。此类热电子通常由金属纳米颗粒中的局域表面等离激元或图案化金属纳米结构中的传播表面等离激元产生。在此,我们在单个金属-半导体器件中同时产生这些异质的表面等离激元诱导热电子,并利用它们的协同相互作用,例如,展示波长控制的极性可切换光电导性。具体而言,双表面等离激元器件产生的净光电流的极性由来自局域和传播表面等离激元的热电子在数量和方向性上的平衡决定。通过以各种方式调整热电子的相互作用,该器件的电流响应度和极性切换波长可以在整个可见光谱范围内变化。这种现象可能为操控光与物质相互作用产生的电输出提供灵活性,并为生物传感器、长距离通信和光转换应用带来机遇。表面等离激元诱导热电子在光探测和光催化方面具有潜在应用。在此,黄等人研究了由局域和传播表面等离激元产生的热电子之间的相互作用,并展示了波长控制的极性可切换光电导性。