Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan.
Theoretical Biology Laboratory, RIKEN, Wako, Saitama, 351-0198, Japan.
Sci Rep. 2017 Oct 3;7(1):12642. doi: 10.1038/s41598-017-12879-2.
MicroRNAs (miRNAs) are small, non-coding RNAs that play critical roles in the post-transcriptional regulation of gene expression. Although the molecular mechanisms of the biogenesis and activation of miRNA have been extensively studied, the details of their kinetics within individual living cells remain largely unknown. We developed a novel method for time-lapse imaging of the rapid dynamics of miRNA activity in living cells using destabilized fluorescent proteins (dsFPs). Real-time monitoring of dsFP-based miRNA sensors revealed the duration necessary for miRNA biogenesis to occur, from primary miRNA transcription to mature miRNA activation, at single-cell resolution. Mathematical modeling, which included the decay kinetics of the fluorescence of the miRNA sensors, demonstrated that miRNAs induce translational repression depending on their complementarity with targets. We also developed a dual-color imaging system, and demonstrated that miR-9-5p and miR-9-3p were produced and activated from a common hairpin precursor with similar kinetics, in single cells. Furthermore, a dsFP-based miR-132 sensor revealed the rapid kinetics of miR-132 activation in cortical neurons under physiological conditions. The timescale of miRNA biogenesis and activation is much shorter than the median half-lives of the proteome, suggesting that the degradation rates of miRNA target proteins are the dominant rate-limiting factors for miRNA-mediated gene silencing.
微小 RNA(miRNAs)是小的非编码 RNA,在基因表达的转录后调控中发挥关键作用。尽管 miRNA 的生物发生和激活的分子机制已被广泛研究,但它们在单个活细胞内的动力学细节在很大程度上仍然未知。我们开发了一种使用不稳定荧光蛋白(dsFPs)对活细胞中 miRNA 活性的快速动力学进行延时成像的新方法。基于 dsFP 的 miRNA 传感器的实时监测揭示了 miRNA 生物发生从初级 miRNA 转录到成熟 miRNA 激活所需的时间,达到单细胞分辨率。数学建模,包括 miRNA 传感器荧光的衰减动力学,表明 miRNAs 根据与靶标的互补性诱导翻译抑制。我们还开发了一种双色成像系统,并证明 miR-9-5p 和 miR-9-3p 从共同的发夹前体以相似的动力学在单个细胞中产生和激活。此外,基于 dsFP 的 miR-132 传感器揭示了生理条件下皮质神经元中 miR-132 激活的快速动力学。miRNA 生物发生和激活的时间尺度比蛋白质组的中位数半衰期短得多,这表明 miRNA 靶蛋白的降解率是 miRNA 介导的基因沉默的主要限速因素。