Dai Engao, Xu Jiao, Qiu Junjie, Liu Shucheng, Chen Ping, Liu Yi
School of Physical Sciences, Guizhou University, Guiyang, 550025, China.
Sci Rep. 2017 Oct 3;7(1):12588. doi: 10.1038/s41598-017-12733-5.
Developing a composite electrode containing both carbon and transition metal/metal oxide as the supercapacitor electrode can combine the merits and mitigate the shortcomings of both the components. Herein, we report a simple strategy to prepare the hybrid nanostructure of Co@Carbon and CoO@Carbon by pyrolysis a single MOFs precursor. Co-based MOFs (Co-BDC) nanosheets with morphology of regular parallelogram slice have been prepared by a bottom-up synthesis strategy. One-step pyrolysis of Co-BDC, produces a porous carbon layer incorporating well-dispersed Co and CoO nanoparticles. The as-prepared cobalt-carbon composites exhibit the thin layer morphology and large specific surface area with hierarchical porosity. These features significantly improve the ion-accessible surface area for charge storage and shorten the ion transport length in thin dimension, thus contributing to a high specific capacitance. Improved capacitance performance was successfully realized for the asymmetric supercapacitors (ASCs) (Co@Carbon//CoO@Carbon), better than those of the symmetric supercapacitors (SSCs) based on Co@Carbon and CoO@Carbon materials (i.e., Co@Carbon//Co@Carbon and CoO@Carbon//CoO@Carbon). The working voltage of the ASCs can be extended to 1.5 V and show a remarkable high power capability in aqueous electrolyte. This work provides a controllable strategy for nanostructured carbon-metal and carbon-metal oxide composite electrodes from a single precursor.
开发一种包含碳和过渡金属/金属氧化物的复合电极作为超级电容器电极,可以结合两种组分的优点并减轻其缺点。在此,我们报告了一种通过热解单一金属有机框架(MOFs)前驱体来制备Co@碳和CoO@碳混合纳米结构的简单策略。通过自下而上的合成策略制备了具有规则平行四边形片状形态的钴基金属有机框架(Co-BDC)纳米片。Co-BDC的一步热解产生了一种包含均匀分散的Co和CoO纳米颗粒的多孔碳层。所制备的钴-碳复合材料呈现出薄层形态和具有分级孔隙率的大比表面积。这些特性显著提高了用于电荷存储的离子可及表面积,并缩短了薄尺寸下的离子传输长度,从而有助于获得高比电容。非对称超级电容器(ASCs)(Co@碳//CoO@碳)成功实现了改进的电容性能,优于基于Co@碳和CoO@碳材料的对称超级电容器(SSCs)(即Co@碳//Co@碳和CoO@碳//CoO@碳)。ASCs的工作电压可以扩展到1.5 V,并在水性电解质中显示出显著的高功率能力。这项工作为从单一前驱体制备纳米结构的碳-金属和碳-金属氧化物复合电极提供了一种可控策略。