Li Changwei, Sha Lei, Yang Kang, Kong Fangong, Li Peng, Tao Yubo, Zhao Xin, Chen Honglei
State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.
Front Chem. 2022 Aug 16;10:991230. doi: 10.3389/fchem.2022.991230. eCollection 2022.
Here, a Co-Metal Organic Framework/pre-hydrolysis (Co-MOF/pre-hydrolysis) solution carbon material is prepared by a mild and environmentally-friendly hydrothermal carbonization technique using a pulping pre-hydrolysis solution as the raw material and Co-MOF as the metal dopant. The stable hollow structure provide sufficient space for particle shrinkage and expansion, while the low density and large specific surface area of the long, hairy tentacle structure provide a greater contact area for ions, which shorten the transmission path of electrons and charges. The materials exhibit excellent specific capacitance (400 F/g, 0.5 A/g) and stability (90%, 10,000 cycles). The Change of different concentration ratios in the structures significantly affect the electrochemical performance. The specific surface area of the carbon materials prepared by ultra-filtration increased, but the specific surface area decrease as ultrafiltration concentration increase. The specific capacitance decrease from 336 F/g for C-ZIF-67-1/3 volume ultrafiltration to 258 F/g for C-ZIF-67-1/5 ultrafiltration. The results indicate that energy storage by the carbon materials relied on a synergistic effect between their microporous and mesoporous structures. The micropores provide storage space for the transmission of ions, while the mesopores provide ion transport channels. The separation of large and small molecules after ultrafiltration concentration limit the ion transmission and energy storage of the pores.
在此,以制浆预水解溶液为原料、Co-MOF作为金属掺杂剂,通过温和且环境友好的水热碳化技术制备了一种Co-金属有机框架/预水解(Co-MOF/预水解)溶液碳材料。稳定的中空结构为颗粒的收缩和膨胀提供了足够的空间,而长而多毛的触手状结构的低密度和大比表面积为离子提供了更大的接触面积,缩短了电子和电荷的传输路径。这些材料表现出优异的比电容(400 F/g,0.5 A/g)和稳定性(90%,10000次循环)。结构中不同浓度比的变化显著影响电化学性能。通过超滤制备的碳材料的比表面积增加,但随着超滤浓度的增加比表面积减小。比电容从C-ZIF-67-1/3体积超滤时的336 F/g降至C-ZIF-67-1/5超滤时的258 F/g。结果表明,碳材料的能量存储依赖于其微孔和介孔结构之间的协同效应。微孔为离子传输提供存储空间,而介孔提供离子传输通道。超滤浓缩后大分子和小分子的分离限制了孔的离子传输和能量存储。