Schwaminger Sebastian P, Surya Rifki, Filser Simon, Wimmer Andreas, Weigl Florian, Fraga-García Paula, Berensmeier Sonja
Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, 85748, Garching b, München, Germany.
Non-Equilibrium Chemical Physics, Department of Physics, Technical University of Munich, 85748, Garching b, München, Germany.
Sci Rep. 2017 Oct 3;7(1):12609. doi: 10.1038/s41598-017-12791-9.
Iron oxide nanoparticles represent a promising low-cost environmentally-friendly material for multiple applications. Especially hematite (α-FeO) nanoparticles demonstrate great possibilities in energy storage and photoelectrochemistry. A hydrothermal one-pot synthesis can be used to synthesise hematite nanoparticles. Here, the particle formation, nucleation and growth of iron oxide nanoparticles using a FeCl precursor over time is monitored. The formation of 6-line ferrihydrite seeds of 2-8 nm which grow with reaction time and form clusters followed by a phase transition to ~15 nm hematite particles can be observed with ex situ X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman and UV/Vis spectroscopy. These particles grow with reaction time leading to 40 nm particles after 6 hours. The changes in plasmon and electron transition patterns, observed upon particle transition and growth lead to the possibility of tuning the photoelectrochemical properties. Catalytic activity of the hematite nanoparticles can be proven with visible light irradiation and the use of silver nitrate as scavenger material. The generation of elementary silver is dependent on the particle size of iron oxide nanoparticles while only slight changes can be observed in the oxygen generation. Low-cost nanoscale hematite, offers a range of future applications for artificial photosynthesis.
氧化铁纳米颗粒是一种很有前景的低成本环保材料,可用于多种应用。特别是赤铁矿(α-Fe₂O₃)纳米颗粒在能量存储和光电化学方面展现出巨大潜力。水热一锅法可用于合成赤铁矿纳米颗粒。在此,使用FeCl前驱体,随着时间推移监测氧化铁纳米颗粒的颗粒形成、成核和生长过程。通过非原位X射线衍射(XRD)、透射电子显微镜(TEM)、拉曼光谱和紫外/可见光谱,可以观察到2-8纳米的六线水铁矿晶种的形成,这些晶种随着反应时间增长并形成簇,随后发生相变形成约15纳米的赤铁矿颗粒。这些颗粒随着反应时间增长,6小时后会形成40纳米的颗粒。在颗粒转变和生长过程中观察到的等离子体和电子跃迁模式的变化,使得调节光电化学性质成为可能。用可见光照射并使用硝酸银作为清除剂材料,可以证明赤铁矿纳米颗粒的催化活性。单质银的生成取决于氧化铁纳米颗粒的粒径,而在氧气生成方面只能观察到轻微变化。低成本的纳米级赤铁矿为人工光合作用提供了一系列未来应用。