文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于灰度超声图像累积概率分布积分评估颈动脉斑块回声性。

Evaluation of carotid plaque echogenicity based on the integral of the cumulative probability distribution using gray-scale ultrasound images.

作者信息

Huang Xiaowei, Zhang Yanling, Meng Long, Abbott Derek, Qian Ming, Wong Kelvin K L, Zheng Rongqing, Zheng Hairong, Niu Lili

机构信息

Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China.

出版信息

PLoS One. 2017 Oct 4;12(10):e0185261. doi: 10.1371/journal.pone.0185261. eCollection 2017.


DOI:10.1371/journal.pone.0185261
PMID:28977008
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5627908/
Abstract

OBJECTIVE: Carotid plaque echogenicity is associated with the risk of cardiovascular events. Gray-scale median (GSM) of the ultrasound image of carotid plaques has been widely used as an objective method for evaluation of plaque echogenicity in patients with atherosclerosis. We proposed a computer-aided method to evaluate plaque echogenicity and compared its efficiency with GSM. METHODS: One hundred and twenty-five carotid plaques (43 echo-rich, 35 intermediate, 47 echolucent) were collected from 72 patients in this study. The cumulative probability distribution curves were obtained based on statistics of the pixels in the gray-level images of plaques. The area under the cumulative probability distribution curve (AUCPDC) was calculated as its integral value to evaluate plaque echogenicity. RESULTS: The classification accuracy for three types of plaques is 78.4% (kappa value, κ = 0.673), when the AUCPDC is used for classifier training, whereas GSM is 64.8% (κ = 0.460). The receiver operating characteristic curves were produced to test the effectiveness of AUCPDC and GSM for the identification of echolucent plaques. The area under the curve (AUC) was 0.817 when AUCPDC was used for training the classifier, which is higher than that achieved using GSM (AUC = 0.746). Compared with GSM, the AUCPDC showed a borderline association with coronary heart disease (Spearman r = 0.234, p = 0.050). CONCLUSIONS: Our experimental results suggest that AUCPDC analysis is a promising method for evaluation of plaque echogenicity and predicting cardiovascular events in patients with plaques.

摘要

目的:颈动脉斑块回声特性与心血管事件风险相关。颈动脉斑块超声图像的灰度中位数(GSM)已被广泛用作评估动脉粥样硬化患者斑块回声特性的一种客观方法。我们提出了一种计算机辅助方法来评估斑块回声特性,并将其效率与GSM进行比较。 方法:本研究从72例患者中收集了125个颈动脉斑块(43个高回声、35个等回声、47个低回声)。基于斑块灰度图像中像素的统计数据获得累积概率分布曲线。计算累积概率分布曲线下的面积(AUCPDC)作为其积分值来评估斑块回声特性。 结果:当使用AUCPDC进行分类器训练时,三种类型斑块的分类准确率为78.4%(kappa值,κ = 0.673),而GSM为64.8%(κ = 0.460)。绘制受试者工作特征曲线以测试AUCPDC和GSM识别低回声斑块的有效性。当使用AUCPDC训练分类器时,曲线下面积(AUC)为0.817,高于使用GSM时的AUC(AUC = 0.746)。与GSM相比,AUCPDC与冠心病呈边缘性关联(Spearman秩相关系数r = 0.234,p = 0.050)。 结论:我们的实验结果表明,AUCPDC分析是评估斑块回声特性和预测斑块患者心血管事件的一种有前景的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e6/5627908/944dac61875f/pone.0185261.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e6/5627908/8cde10422798/pone.0185261.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e6/5627908/f9633c50e167/pone.0185261.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e6/5627908/64384954e8b8/pone.0185261.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e6/5627908/ad264ad60502/pone.0185261.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e6/5627908/944dac61875f/pone.0185261.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e6/5627908/8cde10422798/pone.0185261.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e6/5627908/f9633c50e167/pone.0185261.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e6/5627908/64384954e8b8/pone.0185261.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e6/5627908/ad264ad60502/pone.0185261.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48e6/5627908/944dac61875f/pone.0185261.g005.jpg

相似文献

[1]
Evaluation of carotid plaque echogenicity based on the integral of the cumulative probability distribution using gray-scale ultrasound images.

PLoS One. 2017-10-4

[2]
Identification of Ultrasonic Echolucent Carotid Plaques Using Discrete Fréchet Distance Between Bimodal Gamma Distributions.

IEEE Trans Biomed Eng. 2017-3-1

[3]
The utility of ultrasonic tissue characterization of carotid plaque in the prediction of cardiovascular events in diabetic patients.

Atherosclerosis. 2013-8-26

[4]
Classification of Carotid Plaque Echogenicity by Combining Texture Features and Morphologic Characteristics.

J Ultrasound Med. 2016-10

[5]
Comparison of grey scale median (GSM) measurement in ultrasound images of human carotid plaques using two different softwares.

Clin Physiol Funct Imaging. 2013-11

[6]
Risk Marker Variability in Subclinical Carotid Plaques Based on Ultrasound is Influenced by Cardiac Phase, Echogenicity and Size.

Ultrasound Med Biol. 2018-8

[7]
Percentage white: a new feature for ultrasound classification of plaque echogenicity in carotid artery atherosclerosis.

Ultrasound Med Biol. 2009-12-16

[8]
Identification of patients with a histologically unstable carotid plaque using ultrasonic plaque image analysis.

Eur J Vasc Endovasc Surg. 2014-6-16

[9]
Computer-assisted characterisation of a carotid plaque.

Med Sci Monit. 2004-6

[10]
Cerebral embolism during carotid artery stenting: role of carotid plaque echolucency.

Cerebrovasc Dis. 2009

引用本文的文献

[1]
Carotid plaque segmentation and classification using MRI-based plaque texture analysis and convolutional neural network.

Front Med (Lausanne). 2025-6-20

[2]
Current Biomarkers for Carotid Artery Stenosis: A Comprehensive Review of the Literature.

Metabolites. 2023-8-5

[3]
Multilevel Strip Pooling-Based Convolutional Neural Network for the Classification of Carotid Plaque Echogenicity.

Comput Math Methods Med. 2021

[4]
Ultrasound-based internal carotid artery plaque characterization using deep learning paradigm on a supercomputer: a cardiovascular disease/stroke risk assessment system.

Int J Cardiovasc Imaging. 2021-5

[5]
Acupuncture treatment for carotid atherosclerotic plaques: study protocol for a pilot randomized, single blinded, controlled clinical trial.

Trials. 2020-9-7

[6]
Ultrasonography of vulnerable atherosclerotic plaque in the carotid arteries: B-mode imaging.

J Ultrason. 2020

[7]
Rheumatoid Arthritis: Atherosclerosis Imaging and Cardiovascular Risk Assessment Using Machine and Deep Learning-Based Tissue Characterization.

Curr Atheroscler Rep. 2019-1-25

本文引用的文献

[1]
Classification of Carotid Plaque Echogenicity by Combining Texture Features and Morphologic Characteristics.

J Ultrasound Med. 2016-10

[2]
Lymphocytopenia Is an Independent Predictor of Unfavorable Functional Outcome in Spontaneous Intracerebral Hemorrhage.

Stroke. 2016-4-12

[3]
Commentary on 'Plaque Echolucency and the Risk of Ischaemic Stroke in Patients with Asymptomatic Carotid Stenosis Within the First Asymptomatic Carotid Surgery Trial (ACST-1)'.

Eur J Vasc Endovasc Surg. 2016-5

[4]
Heart disease and stroke statistics--2015 update: a report from the American Heart Association.

Circulation. 2015-1-27

[5]
A prediction model for unstable carotid atheromatous plaque in acute ischemic stroke patients: proposal and internal validation.

Ultrasound Med Biol. 2014-9

[6]
Identification of patients with a histologically unstable carotid plaque using ultrasonic plaque image analysis.

Eur J Vasc Endovasc Surg. 2014-6-16

[7]
The utility of ultrasonic tissue characterization of carotid plaque in the prediction of cardiovascular events in diabetic patients.

Atherosclerosis. 2013-8-26

[8]
Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome.

Can J Diabetes. 2013-4

[9]
Association of ultrasonic texture and echodensity features between sides in patients with bilateral carotid atherosclerosis.

Eur J Vasc Endovasc Surg. 2013-7-10

[10]
Atherosclerotic risk stratification strategy for carotid arteries using texture-based features.

Ultrasound Med Biol. 2012-4-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索