文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

类风湿关节炎:基于机器学习和深度学习的组织特征分析的动脉粥样硬化成像和心血管风险评估。

Rheumatoid Arthritis: Atherosclerosis Imaging and Cardiovascular Risk Assessment Using Machine and Deep Learning-Based Tissue Characterization.

机构信息

Department of Cardiology, Indraprastha Apollo Hospitals, New Delhi, India.

Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India.

出版信息

Curr Atheroscler Rep. 2019 Jan 25;21(2):7. doi: 10.1007/s11883-019-0766-x.


DOI:10.1007/s11883-019-0766-x
PMID:30684090
Abstract

PURPOSE OF THE REVIEW: Rheumatoid arthritis (RA) is a chronic, autoimmune disease which may result in a higher risk of cardiovascular (CV) events and stroke. Tissue characterization and risk stratification of patients with rheumatoid arthritis are a challenging problem. Risk stratification of RA patients using traditional risk factor-based calculators either underestimates or overestimates the CV risk. Advancements in medical imaging have facilitated early and accurate CV risk stratification compared to conventional cardiovascular risk calculators. RECENT FINDING: In recent years, a link between carotid atherosclerosis and rheumatoid arthritis has been widely discussed by multiple studies. Imaging the carotid artery using 2-D ultrasound is a noninvasive, economic, and efficient imaging approach that provides an atherosclerotic plaque tissue-specific image. Such images can help to morphologically characterize the plaque type and accurately measure vital phenotypes such as media wall thickness and wall variability. Intelligence-based paradigms such as machine learning- and deep learning-based techniques not only automate the risk characterization process but also provide an accurate CV risk stratification for better management of RA patients. This review provides a brief understanding of the pathogenesis of RA and its association with carotid atherosclerosis imaged using the B-mode ultrasound technique. Lacunas in traditional risk scores and the role of machine learning-based tissue characterization algorithms are discussed and could facilitate cardiovascular risk assessment in RA patients. The key takeaway points from this review are the following: (i) inflammation is a common link between RA and atherosclerotic plaque buildup, (ii) carotid ultrasound is a better choice to characterize the atherosclerotic plaque tissues in RA patients, and (iii) intelligence-based paradigms are useful for accurate tissue characterization and risk stratification of RA patients.

摘要

目的综述:类风湿关节炎(RA)是一种慢性自身免疫性疾病,可能导致心血管(CV)事件和中风的风险增加。类风湿关节炎患者的组织特征和风险分层是一个具有挑战性的问题。使用基于传统危险因素的计算器对 RA 患者进行风险分层要么低估要么高估 CV 风险。与传统心血管风险计算器相比,医学影像学的进步促进了早期和准确的 CV 风险分层。

最近的发现:近年来,多项研究广泛讨论了颈动脉粥样硬化与类风湿关节炎之间的联系。使用 2-D 超声对颈动脉成像,是一种非侵入性、经济且高效的成像方法,可提供动脉粥样硬化斑块的组织特异性图像。这些图像有助于对斑块类型进行形态学特征描述,并准确测量中膜壁厚度和壁变异性等重要表型。基于人工智能的范式,如基于机器学习和深度学习的技术,不仅可以实现风险特征描述过程的自动化,还可以为 RA 患者提供更准确的 CV 风险分层,从而更好地管理他们的病情。

本综述简要介绍了 RA 的发病机制及其与 B 型超声技术成像的颈动脉粥样硬化的关系。讨论了传统风险评分中的空白以及基于机器学习的组织特征描述算法的作用,这可能有助于评估 RA 患者的心血管风险。从本综述中得出的关键要点如下:(i)炎症是 RA 和动脉粥样硬化斑块形成之间的共同联系,(ii)颈动脉超声是 RA 患者特征性斑块组织的更好选择,(iii)基于人工智能的范式可用于 RA 患者的准确组织特征描述和风险分层。

相似文献

[1]
Rheumatoid Arthritis: Atherosclerosis Imaging and Cardiovascular Risk Assessment Using Machine and Deep Learning-Based Tissue Characterization.

Curr Atheroscler Rep. 2019-1-25

[2]
Cardiovascular risk assessment in patients with rheumatoid arthritis using carotid ultrasound B-mode imaging.

Rheumatol Int. 2020-12

[3]
Relative contribution of cardiovascular risk factors and rheumatoid arthritis clinical manifestations to atherosclerosis.

Arthritis Rheum. 2005-11

[4]
Increased prevalence of carotid artery atherosclerosis in rheumatoid arthritis is artery-specific.

J Rheumatol. 2010-1-28

[5]
The best cardiovascular risk calculator to predict carotid plaques in rheumatoid arthritis patients.

Clin Rheumatol. 2018-7-2

[6]
The role of non-invasive cardiovascular imaging in the assessment of cardiovascular risk in rheumatoid arthritis: where we are and where we need to be.

Ann Rheum Dis. 2016-11-28

[7]
A Special Report on Changing Trends in Preventive Stroke/Cardiovascular Risk Assessment Via B-Mode Ultrasonography.

Curr Atheroscler Rep. 2019-5-1

[8]
Noninvasive cardiovascular imaging in rheumatoid arthritis: current modalities and the emerging role of magnetic resonance and positron emission tomography imaging.

Semin Arthritis Rheum. 2011-10-13

[9]
[Application of cardiovascular risk scales to identify carotid atherosclerosis in patients with rheumatoid arthritis].

Ter Arkh. 2021-5-15

[10]
High titer of anti-citrullinated peptide antibody is a risk factor for severe carotid atherosclerotic plaque in patients with rheumatoid arthritis: the TOMORROW study.

Int J Rheum Dis. 2017-8

引用本文的文献

[1]
Carotid plaque segmentation and classification using MRI-based plaque texture analysis and convolutional neural network.

Front Med (Lausanne). 2025-6-20

[2]
Role of Cardiac Biomarkers in the Evaluation of Rheumatoid Arthritis: A Systematic Review.

Cureus. 2023-10-21

[3]
Cardiovascular disease/stroke risk stratification in deep learning framework: a review.

Cardiovasc Diagn Ther. 2023-6-30

[4]
Development and Validation of a Radiomics Model Based on 3-Dimensional Endoanal Rectal Ultrasound of Rectal Cancer for Predicting Lymph Node Metastasis.

Turk J Gastroenterol. 2023-5

[5]
Ischemic stroke prediction of patients with carotid atherosclerotic stenosis multi-modality fused network.

Front Neurosci. 2023-2-24

[6]
Attention-Based UNet Deep Learning Model for Plaque Segmentation in Carotid Ultrasound for Stroke Risk Stratification: An Artificial Intelligence Paradigm.

J Cardiovasc Dev Dis. 2022-9-27

[7]
Artificial Intelligence in Rheumatoid Arthritis: Current Status and Future Perspectives: A State-of-the-Art Review.

Rheumatol Ther. 2022-10

[8]
Role of Artificial Intelligence in Radiogenomics for Cancers in the Era of Precision Medicine.

Cancers (Basel). 2022-6-9

[9]
Improved diagnosis of rheumatoid arthritis using an artificial neural network.

Sci Rep. 2022-6-13

[10]
Harnessing Big Data to Advance Treatment and Understanding of Pulmonary Hypertension.

Circ Res. 2022-4-29

本文引用的文献

[1]
Intra- and inter-operator reproducibility of automated cloud-based carotid lumen diameter ultrasound measurement.

Indian Heart J. 2018

[2]
Echolucency-based phenotype in carotid atherosclerosis disease for risk stratification of diabetes patients.

Diabetes Res Clin Pract. 2018-7-27

[3]
A Survey on Coronary Atherosclerotic Plaque Tissue Characterization in Intravascular Optical Coherence Tomography.

Curr Atheroscler Rep. 2018-5-21

[4]
Deep learning strategy for accurate carotid intima-media thickness measurement: An ultrasound study on Japanese diabetic cohort.

Comput Biol Med. 2018-5-12

[5]
Variables associated with subclinical atherosclerosis in a cohort of rheumatoid arthritis patients: Sex-specific associations and differential effects of disease activity and age.

PLoS One. 2018-3-1

[6]
Low cigarette consumption and risk of coronary heart disease and stroke: meta-analysis of 141 cohort studies in 55 study reports.

BMJ. 2018-1-24

[7]
Coronary versus carotid artery plaques. Similarities and differences regarding biomarkers morphology and prognosis.

Curr Opin Pharmacol. 2017-12-1

[8]
An integrated method for atherosclerotic carotid plaque segmentation in ultrasound image.

Comput Methods Programs Biomed. 2017-10-3

[9]
Cardiac Society of Australia and New Zealand position statement executive summary: coronary artery calcium scoring.

Med J Aust. 2017-10-16

[10]
Evaluation of carotid plaque echogenicity based on the integral of the cumulative probability distribution using gray-scale ultrasound images.

PLoS One. 2017-10-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索