Department of Cardiology, Indraprastha Apollo Hospitals, New Delhi, India.
Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India.
Curr Atheroscler Rep. 2019 Jan 25;21(2):7. doi: 10.1007/s11883-019-0766-x.
PURPOSE OF THE REVIEW: Rheumatoid arthritis (RA) is a chronic, autoimmune disease which may result in a higher risk of cardiovascular (CV) events and stroke. Tissue characterization and risk stratification of patients with rheumatoid arthritis are a challenging problem. Risk stratification of RA patients using traditional risk factor-based calculators either underestimates or overestimates the CV risk. Advancements in medical imaging have facilitated early and accurate CV risk stratification compared to conventional cardiovascular risk calculators. RECENT FINDING: In recent years, a link between carotid atherosclerosis and rheumatoid arthritis has been widely discussed by multiple studies. Imaging the carotid artery using 2-D ultrasound is a noninvasive, economic, and efficient imaging approach that provides an atherosclerotic plaque tissue-specific image. Such images can help to morphologically characterize the plaque type and accurately measure vital phenotypes such as media wall thickness and wall variability. Intelligence-based paradigms such as machine learning- and deep learning-based techniques not only automate the risk characterization process but also provide an accurate CV risk stratification for better management of RA patients. This review provides a brief understanding of the pathogenesis of RA and its association with carotid atherosclerosis imaged using the B-mode ultrasound technique. Lacunas in traditional risk scores and the role of machine learning-based tissue characterization algorithms are discussed and could facilitate cardiovascular risk assessment in RA patients. The key takeaway points from this review are the following: (i) inflammation is a common link between RA and atherosclerotic plaque buildup, (ii) carotid ultrasound is a better choice to characterize the atherosclerotic plaque tissues in RA patients, and (iii) intelligence-based paradigms are useful for accurate tissue characterization and risk stratification of RA patients.
目的综述:类风湿关节炎(RA)是一种慢性自身免疫性疾病,可能导致心血管(CV)事件和中风的风险增加。类风湿关节炎患者的组织特征和风险分层是一个具有挑战性的问题。使用基于传统危险因素的计算器对 RA 患者进行风险分层要么低估要么高估 CV 风险。与传统心血管风险计算器相比,医学影像学的进步促进了早期和准确的 CV 风险分层。
最近的发现:近年来,多项研究广泛讨论了颈动脉粥样硬化与类风湿关节炎之间的联系。使用 2-D 超声对颈动脉成像,是一种非侵入性、经济且高效的成像方法,可提供动脉粥样硬化斑块的组织特异性图像。这些图像有助于对斑块类型进行形态学特征描述,并准确测量中膜壁厚度和壁变异性等重要表型。基于人工智能的范式,如基于机器学习和深度学习的技术,不仅可以实现风险特征描述过程的自动化,还可以为 RA 患者提供更准确的 CV 风险分层,从而更好地管理他们的病情。
本综述简要介绍了 RA 的发病机制及其与 B 型超声技术成像的颈动脉粥样硬化的关系。讨论了传统风险评分中的空白以及基于机器学习的组织特征描述算法的作用,这可能有助于评估 RA 患者的心血管风险。从本综述中得出的关键要点如下:(i)炎症是 RA 和动脉粥样硬化斑块形成之间的共同联系,(ii)颈动脉超声是 RA 患者特征性斑块组织的更好选择,(iii)基于人工智能的范式可用于 RA 患者的准确组织特征描述和风险分层。
Curr Atheroscler Rep. 2019-5-1
Front Med (Lausanne). 2025-6-20
Cardiovasc Diagn Ther. 2023-6-30
Cancers (Basel). 2022-6-9
Diabetes Res Clin Pract. 2018-7-27
Curr Atheroscler Rep. 2018-5-21
Curr Opin Pharmacol. 2017-12-1
Comput Methods Programs Biomed. 2017-10-3