Suppr超能文献

基于多节点时间序列数据的定点网络动力学分类

Classification of Fixed Point Network Dynamics from Multiple Node Timeseries Data.

作者信息

Blaszka David, Sanders Elischa, Riffell Jeffrey A, Shlizerman Eli

机构信息

Department of Applied Mathematics, University of WashingtonSeattle, WA, United States.

Department of Biology, University of WashingtonSeattle, WA, United States.

出版信息

Front Neuroinform. 2017 Sep 20;11:58. doi: 10.3389/fninf.2017.00058. eCollection 2017.

Abstract

Fixed point networks are dynamic networks encoding stimuli via distinct output patterns. Although, such networks are common in neural systems, their structures are typically unknown or poorly characterized. It is thereby valuable to use a supervised approach for resolving how a network encodes inputs of interest and the superposition of those inputs from sampled multiple node time series. In this paper, we show that accomplishing such a task involves finding a low-dimensional state space from supervised noisy recordings. We demonstrate that while standard methods for dimension reduction are unable to provide optimal separation of fixed points and transient trajectories approaching them, the combination of dimension reduction with selection (clustering) and optimization can successfully provide such functionality. Specifically, we propose two methods: Exclusive Threshold Reduction (ETR) and Optimal Exclusive Threshold Reduction (OETR) for finding a basis for the classification state space. We show that the classification space-constructed through the combination of dimension reduction and optimal separation-can directly facilitate recognition of stimuli, and classify complex inputs (mixtures) into similarity classes. We test our methodology on a benchmark data-set recorded from the olfactory system. We also use the benchmark to compare our results with the state-of-the-art. The comparison shows that our methods are capable to construct classification spaces and perform recognition at a significantly better rate than previously proposed approaches.

摘要

定点网络是通过不同输出模式对刺激进行编码的动态网络。尽管此类网络在神经系统中很常见,但其结构通常未知或特征描述不佳。因此,使用监督方法来解决网络如何对感兴趣的输入进行编码以及来自多个采样节点时间序列的那些输入的叠加问题是很有价值的。在本文中,我们表明完成这样一项任务涉及从有噪声的监督记录中找到一个低维状态空间。我们证明,虽然标准的降维方法无法提供定点及其附近瞬态轨迹的最佳分离,但降维与选择(聚类)和优化的结合可以成功提供这种功能。具体来说,我们提出了两种方法:排他阈值约简(ETR)和最优排他阈值约简(OETR),用于找到分类状态空间的一个基。我们表明,通过降维和最优分离相结合构建的分类空间可以直接促进对刺激的识别,并将复杂输入(混合物)分类为相似类。我们在从嗅觉系统记录的基准数据集上测试了我们的方法。我们还使用该基准将我们的结果与当前最先进的方法进行比较。比较结果表明,我们的方法能够构建分类空间并以比先前提出的方法显著更高的准确率进行识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f00/5611511/aeb6aeada343/fninf-11-00058-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验