Suppr超能文献

从神经动力学到功能连接组学:. 神经元网络的概率图模型

Functional connectomics from neural dynamics: probabilistic graphical models for neuronal network of .

机构信息

Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA.

Department of Electrical Engineering, University of Washington, Seattle, WA 98195, USA.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2018 Sep 10;373(1758):20170377. doi: 10.1098/rstb.2017.0377.

Abstract

We propose an approach to represent neuronal network dynamics as a probabilistic graphical model (PGM). To construct the PGM, we collect time series of neuronal responses produced by the neuronal network and use singular value decomposition to obtain a low-dimensional projection of the time-series data. We then extract dominant patterns from the projections to get pairwise dependency information and create a graphical model for the full network. The outcome model is a functional connectome that captures how stimuli propagate through the network and thus represents causal dependencies between neurons and stimuli. We apply our methodology to a model of the somatic nervous system to validate and show an example of our approach. The structure and dynamics of the nervous system are well studied and a model that generates neuronal responses is available. The resulting PGM enables us to obtain and verify underlying neuronal pathways for known behavioural scenarios and detect possible pathways for novel scenarios.This article is part of a discussion meeting issue 'Connectome to behaviour: modelling at cellular resolution'.

摘要

我们提出了一种将神经元网络动力学表示为概率图形模型(PGM)的方法。为了构建 PGM,我们收集由神经元网络产生的神经元反应的时间序列,并使用奇异值分解来获得时间序列数据的低维投影。然后,我们从投影中提取主导模式以获取成对的依赖信息,并为整个网络创建图形模型。最终的模型是功能连接组,它捕获了刺激如何在网络中传播,从而表示神经元和刺激之间的因果关系。我们将我们的方法应用于躯体神经系统模型进行验证,并展示我们方法的一个示例。神经系统的结构和动力学已经得到了很好的研究,并且有一个可以生成神经元反应的模型。生成的 PGM 使我们能够获得和验证已知行为场景的潜在神经元通路,并检测新场景的可能通路。本文是“从细胞分辨率到行为的连接组:建模”讨论专题的一部分。

相似文献

2
Connectome to behaviour: modelling at cellular resolution.连接组到行为:在细胞分辨率下的建模。
Philos Trans R Soc Lond B Biol Sci. 2018 Sep 10;373(1758):20170366. doi: 10.1098/rstb.2017.0366.
3
c302: a multiscale framework for modelling the nervous system of .c302:用于建模 的神经系统的多尺度框架。
Philos Trans R Soc Lond B Biol Sci. 2018 Sep 10;373(1758):20170379. doi: 10.1098/rstb.2017.0379.
5
Flow-Based Network Analysis of the Caenorhabditis elegans Connectome.基于流的秀丽隐杆线虫连接组网络分析。
PLoS Comput Biol. 2016 Aug 5;12(8):e1005055. doi: 10.1371/journal.pcbi.1005055. eCollection 2016 Aug.
6
and the network control framework-FAQs.网络控制框架及常见问题解答。
Philos Trans R Soc Lond B Biol Sci. 2018 Sep 10;373(1758):20170372. doi: 10.1098/rstb.2017.0372.
9
The Worm Connectome: Back to the Future.《蠕虫连接组:回到未来》。
Trends Neurosci. 2018 Nov;41(11):763-765. doi: 10.1016/j.tins.2018.09.002.

引用本文的文献

6
Computing Temporal Sequences Associated With Dynamic Patterns on the Connectome.计算与连接组上动态模式相关的时间序列。
Front Syst Neurosci. 2021 Mar 9;15:564124. doi: 10.3389/fnsys.2021.564124. eCollection 2021.
7
Nonlinear Control in the Nematode .线虫中的非线性控制
Front Comput Neurosci. 2021 Jan 22;14:616639. doi: 10.3389/fncom.2020.616639. eCollection 2020.
9
Neural Interactome: Interactive Simulation of a Neuronal System.神经相互作用组:神经元系统的交互式模拟
Front Comput Neurosci. 2019 Mar 13;13:8. doi: 10.3389/fncom.2019.00008. eCollection 2019.

本文引用的文献

1
Neural Interactome: Interactive Simulation of a Neuronal System.神经相互作用组:神经元系统的交互式模拟
Front Comput Neurosci. 2019 Mar 13;13:8. doi: 10.3389/fncom.2019.00008. eCollection 2019.
6
Bayesian Models for fMRI Data Analysis.用于功能磁共振成像数据分析的贝叶斯模型。
Wiley Interdiscip Rev Comput Stat. 2015 Jan-Feb;7(1):21-41. doi: 10.1002/wics.1339.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验