Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA.
Department of Electrical Engineering, University of Washington, Seattle, WA 98195, USA.
Philos Trans R Soc Lond B Biol Sci. 2018 Sep 10;373(1758):20170377. doi: 10.1098/rstb.2017.0377.
We propose an approach to represent neuronal network dynamics as a probabilistic graphical model (PGM). To construct the PGM, we collect time series of neuronal responses produced by the neuronal network and use singular value decomposition to obtain a low-dimensional projection of the time-series data. We then extract dominant patterns from the projections to get pairwise dependency information and create a graphical model for the full network. The outcome model is a functional connectome that captures how stimuli propagate through the network and thus represents causal dependencies between neurons and stimuli. We apply our methodology to a model of the somatic nervous system to validate and show an example of our approach. The structure and dynamics of the nervous system are well studied and a model that generates neuronal responses is available. The resulting PGM enables us to obtain and verify underlying neuronal pathways for known behavioural scenarios and detect possible pathways for novel scenarios.This article is part of a discussion meeting issue 'Connectome to behaviour: modelling at cellular resolution'.
我们提出了一种将神经元网络动力学表示为概率图形模型(PGM)的方法。为了构建 PGM,我们收集由神经元网络产生的神经元反应的时间序列,并使用奇异值分解来获得时间序列数据的低维投影。然后,我们从投影中提取主导模式以获取成对的依赖信息,并为整个网络创建图形模型。最终的模型是功能连接组,它捕获了刺激如何在网络中传播,从而表示神经元和刺激之间的因果关系。我们将我们的方法应用于躯体神经系统模型进行验证,并展示我们方法的一个示例。神经系统的结构和动力学已经得到了很好的研究,并且有一个可以生成神经元反应的模型。生成的 PGM 使我们能够获得和验证已知行为场景的潜在神经元通路,并检测新场景的可能通路。本文是“从细胞分辨率到行为的连接组:建模”讨论专题的一部分。