Suppr超能文献

关联分析中的群体分层校准

Calibrating Population Stratification in Association Analysis.

作者信息

Qin Huaizhen, Zhu Xiaofeng

机构信息

Department of Global Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA.

Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.

出版信息

Methods Mol Biol. 2017;1666:441-453. doi: 10.1007/978-1-4939-7274-6_21.

Abstract

In genetic association studies, it is necessary to correct for population structure to avoid inference bias. During the past decade, prevailing corrections often only involved adjustments of global ancestry differences between sampled individuals. Nevertheless, population structure may vary across local genomic regions due to the variability of local ancestries associated with natural selection, migration, or random genetic drift. Adjusting for global ancestry alone may be inadequate when local population structure is an important confounding factor. In contrast, adjusting for local ancestry can more effectively prevent false positives due to local population structure. To more accurately locate disease genes, we recommend adjusting for local ancestries by interrogating local structure. In practice, locus-specific ancestries are usually unknown and must be inferred. For recently admixed populations with known reference ancestral populations, locus-specific ancestries can be inferred accurately using some hidden Markov model-based methods. However, SNP-wise ancestries cannot be accurately inferred when ancestral population information is not available. For such scenarios, we propose employing local principal components (PCs) to present local ancestries and adjusting for local PCs when testing for gene-phenotype association.

摘要

在基因关联研究中,有必要对群体结构进行校正,以避免推断偏差。在过去十年中,普遍的校正方法通常只涉及对抽样个体之间全球祖先差异的调整。然而,由于与自然选择、迁移或随机遗传漂变相关的局部祖先的变异性,群体结构可能在局部基因组区域有所不同。当局部群体结构是一个重要的混杂因素时,仅调整全球祖先可能并不充分。相比之下,调整局部祖先可以更有效地防止由于局部群体结构导致的假阳性。为了更准确地定位疾病基因,我们建议通过询问局部结构来调整局部祖先。在实践中,特定基因座的祖先通常是未知的,必须进行推断。对于具有已知参考祖先群体的近期混合群体,可以使用一些基于隐马尔可夫模型的方法准确推断特定基因座的祖先。然而,当没有祖先群体信息时,单核苷酸多态性(SNP)层面的祖先无法准确推断。对于这种情况,我们建议采用局部主成分(PC)来呈现局部祖先,并在测试基因-表型关联时对局部PC进行调整。

相似文献

1
Calibrating Population Stratification in Association Analysis.关联分析中的群体分层校准
Methods Mol Biol. 2017;1666:441-453. doi: 10.1007/978-1-4939-7274-6_21.
2
Allowing for population stratification in association analysis.在关联分析中考虑群体分层。
Methods Mol Biol. 2012;850:399-409. doi: 10.1007/978-1-61779-555-8_21.
4
The Analysis of Ethnic Mixtures.种族混合分析
Methods Mol Biol. 2017;1666:505-525. doi: 10.1007/978-1-4939-7274-6_25.
7
On the inference of ancestries in admixed populations.关于混合群体中祖先的推断。
Genome Res. 2008 Apr;18(4):668-75. doi: 10.1101/gr.072751.107. Epub 2008 Mar 18.

本文引用的文献

3
Detecting structure of haplotypes and local ancestry.检测单倍型和局部祖源结构。
Genetics. 2014 Mar;196(3):625-42. doi: 10.1534/genetics.113.160697. Epub 2014 Jan 3.
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验