Suppr超能文献

类器官和器官芯片系统:用于模拟神经和胃肠道疾病的新范式。

Organoid and Organ-On-A-Chip Systems: New Paradigms for Modeling Neurological and Gastrointestinal Disease.

作者信息

Akhtar Aslam Abbasi, Sances Samuel, Barrett Robert, Breunig Joshua J

机构信息

Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048.

Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048.

出版信息

Curr Stem Cell Rep. 2017 Jun;3(2):98-111. doi: 10.1007/s40778-017-0080-x. Epub 2017 Apr 18.

Abstract

PURPOSE OF REVIEW

The modeling of biological processes provides an important tool to better understand mechanisms of development and disease, allowing for the rapid testing of therapeutics. However, a critical constraint in traditional monolayer culture systems is the absence of the multicellularity, spatial organization, and overall microenvironment present . This limitation has resulted in numerous therapeutics showing efficacy , but failing in patient trials. In this review, we discuss several organoid and "organ-on-a-chip" systems with particular regard to the modeling of neurological diseases and gastrointestinal disorders.

RECENT FINDINGS

Recently, the generation of multicellular organ-like structures, coined organoids, has allowed the modeling of human development, tissue architecture, and disease with human-specific pathophysiology. Additionally, microfluidic "organ-on-a-chip" technologies add another level of physiological mimicry by allowing biological mediums to be shuttled through 3D cultures.

SUMMARY

Organoids and organ-chips are rapidly evolving platforms which hold great promise for the modeling of development and disease.

摘要

综述目的

生物过程建模为更好地理解发育和疾病机制提供了重要工具,有助于快速测试治疗方法。然而,传统单层培养系统的一个关键限制是缺乏多细胞性、空间组织和整体微环境。这一局限性导致许多治疗方法在体外试验中显示出疗效,但在患者试验中失败。在本综述中,我们讨论了几种类器官和“芯片器官”系统,特别关注神经疾病和胃肠道疾病的建模。

最新发现

最近,多细胞类器官结构的产生,即类器官,使得对具有人类特异性病理生理学的人类发育、组织结构和疾病进行建模成为可能。此外,微流控“芯片器官”技术通过使生物介质在三维培养物中穿梭,增加了另一层次的生理模拟。

总结

类器官和芯片器官是快速发展的平台,在发育和疾病建模方面具有巨大潜力。

相似文献

1
Organoid and Organ-On-A-Chip Systems: New Paradigms for Modeling Neurological and Gastrointestinal Disease.
Curr Stem Cell Rep. 2017 Jun;3(2):98-111. doi: 10.1007/s40778-017-0080-x. Epub 2017 Apr 18.
2
Engineering Microfluidic Organoid-on-a-Chip Platforms.
Micromachines (Basel). 2019 Feb 27;10(3):165. doi: 10.3390/mi10030165.
3
Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling.
Drug Discov Today. 2016 Sep;21(9):1399-1411. doi: 10.1016/j.drudis.2016.07.003. Epub 2016 Jul 12.
4
Microfluidic Organoids-on-a-Chip: Quantum Leap in Cancer Research.
Cancers (Basel). 2021 Feb 10;13(4):737. doi: 10.3390/cancers13040737.
5
Engineering mechanobiology through organoids-on-chip: A strategy to boost therapeutics.
J Tissue Eng Regen Med. 2021 Nov;15(11):883-899. doi: 10.1002/term.3234. Epub 2021 Aug 12.
7
Patient-Specific Organoid and Organ-on-a-Chip: 3D Cell-Culture Meets 3D Printing and Numerical Simulation.
Adv Biol (Weinh). 2021 Jun;5(6):e2000024. doi: 10.1002/adbi.202000024. Epub 2021 Apr 15.
8
Patient-Derived Organoids in Precision Medicine: Drug Screening, Organoid-on-a-Chip and Living Organoid Biobank.
Front Oncol. 2021 Dec 30;11:762184. doi: 10.3389/fonc.2021.762184. eCollection 2021.
9
Organ Chips and Visualization of Biological Systems.
Adv Exp Med Biol. 2023;1199:155-183. doi: 10.1007/978-981-32-9902-3_8.

引用本文的文献

1
2
Microphysiological Blood-Brain Barrier Systems for Disease Modeling and Drug Development.
Adv Healthc Mater. 2024 Aug;13(21):e2303180. doi: 10.1002/adhm.202303180. Epub 2024 Mar 12.
3
Revolutionizing immune research with organoid-based co-culture and chip systems.
Clin Exp Immunol. 2024 Sep 16;218(1):40-54. doi: 10.1093/cei/uxae004.
6
Microfluidics for Neuronal Cell and Circuit Engineering.
Chem Rev. 2022 Sep 28;122(18):14842-14880. doi: 10.1021/acs.chemrev.2c00212. Epub 2022 Sep 7.
8
Patient-Specific Organoid and Organ-on-a-Chip: 3D Cell-Culture Meets 3D Printing and Numerical Simulation.
Adv Biol (Weinh). 2021 Jun;5(6):e2000024. doi: 10.1002/adbi.202000024. Epub 2021 Apr 15.
9
Engineering organoids.
Nat Rev Mater. 2021;6(5):402-420. doi: 10.1038/s41578-021-00279-y. Epub 2021 Feb 19.

本文引用的文献

1
Rapid Generation of Somatic Mouse Mosaics with Locus-Specific, Stably Integrated Transgenic Elements.
Cell. 2019 Sep 19;179(1):251-267.e24. doi: 10.1016/j.cell.2019.08.013.
2
Differentiation of Human Induced Pluripotent Stem Cells to Mammary-like Organoids.
Stem Cell Reports. 2017 Feb 14;8(2):205-215. doi: 10.1016/j.stemcr.2016.12.023. Epub 2017 Jan 26.
3
Induction of Expansion and Folding in Human Cerebral Organoids.
Cell Stem Cell. 2017 Mar 2;20(3):385-396.e3. doi: 10.1016/j.stem.2016.11.017. Epub 2016 Dec 29.
6
The promises and challenges of human brain organoids as models of neuropsychiatric disease.
Nat Med. 2016 Nov;22(11):1220-1228. doi: 10.1038/nm.4214. Epub 2016 Oct 26.
8
Midbrain-like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin-Producing Neurons.
Cell Stem Cell. 2016 Aug 4;19(2):248-257. doi: 10.1016/j.stem.2016.07.005. Epub 2016 Jul 28.
9
ALS disrupts spinal motor neuron maturation and aging pathways within gene co-expression networks.
Nat Neurosci. 2016 Sep;19(9):1256-67. doi: 10.1038/nn.4345. Epub 2016 Jul 18.
10
Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening.
Biotechnol Bioeng. 2017 Jan;114(1):184-194. doi: 10.1002/bit.26045. Epub 2016 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验