Hofer Moritz, Lutolf Matthias P
Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Institute of Chemical Sciences and Engineering, School of Basic Science (SB), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Nat Rev Mater. 2021;6(5):402-420. doi: 10.1038/s41578-021-00279-y. Epub 2021 Feb 19.
Organoids are in vitro miniaturized and simplified model systems of organs that have gained enormous interest for modelling tissue development and disease, and for personalized medicine, drug screening and cell therapy. Despite considerable success in culturing physiologically relevant organoids, challenges remain to achieve real-life applications. In particular, the high variability of self-organizing growth and restricted experimental and analytical access hamper the translatability of organoid systems. In this Review, we argue that many limitations of traditional organoid culture can be addressed by engineering approaches at all levels of organoid systems. We investigate cell surface and genetic engineering approaches, and discuss stem cell niche engineering based on the design of matrices that allow spatiotemporal control of organoid growth and shape-guided morphogenesis. We examine how microfluidic approaches and lessons learnt from organs-on-a-chip enable the integration of mechano-physiological parameters and increase accessibility of organoids to improve functional readouts. Applying engineering principles to organoids increases reproducibility and provides experimental control, which will, ultimately, be required to enable clinical translation.
类器官是体外微型化和简化的器官模型系统,在组织发育和疾病建模、个性化医疗、药物筛选及细胞治疗方面引起了极大关注。尽管在培养生理相关类器官方面取得了相当大的成功,但实现实际应用仍面临挑战。特别是,自组织生长的高度变异性以及有限的实验和分析途径阻碍了类器官系统的可转化性。在本综述中,我们认为传统类器官培养的许多局限性可以通过在类器官系统的各个层面采用工程方法来解决。我们研究了细胞表面和基因工程方法,并基于能够对类器官生长和形状引导的形态发生进行时空控制的基质设计,讨论了干细胞生态位工程。我们研究了微流控方法以及从芯片上器官中学到的经验如何实现机械生理参数的整合,并提高类器官的可及性以改善功能读数。将工程原理应用于类器官可提高可重复性并提供实验控制,这最终将是实现临床转化所必需的。