School of Computer Science and Technology & Joint International Research Laboratory of Machine Learning and Neuromorphic Computing, Soochow University, Suzhou 215006, China.
Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
Neural Netw. 2017 Dec;96:55-70. doi: 10.1016/j.neunet.2017.08.001. Epub 2017 Sep 14.
We propose a robust Alternating Low-Rank Representation (ALRR) model formed by an alternating forward-backward representation process. For forward representation, ALRR first recovers the low-rank PCs and random corruptions by an adaptive local Robust PCA (RPCA). Then, ALRR performs a joint L-norm and L-norm minimization (0<p <1) based sparse LRR by taking the low-rank PCs as inputs and dictionary instead of using the original noisy data to learn the coding coefficients for subspace recovery, where the L-norm on the coefficients can ensure joint sparsity for subspace representation, while the L-norm on the reconstruction error can handle outlier pursuit. After that, ALRR returns the coefficients as adaptive weights to local RPCA for updating PCs and dictionary in the backward representation process. Thus, ALRR is regarded as an integration of local RPCA with adaptive weights plus sparse LRR with a self-expressive low-rank dictionary. To enable ALRR to handle outside data efficiently, a projective ALRR that can extract features from data directly by embedding is also derived. To solve the L-norm based minimization problem, a new iterative scheme based on the Iterative Shrinkage/Thresholding (IST) approach is presented. The relationship analysis with other related criteria show that our methods are more general. Visual and numerical results demonstrate the effectiveness of our algorithms for representation.
我们提出了一种由交替的正向-反向表示过程形成的稳健交替低秩表示(ALRR)模型。对于正向表示,ALRR 首先通过自适应局部鲁棒主成分分析(RPCA)恢复低秩 PCs 和随机错误。然后,ALRR 通过将低秩 PCs 作为输入和字典进行基于 Lp 范数和 Lp 范数最小化(0<p<1)的联合稀疏 LRR,而不是使用原始噪声数据来学习子空间恢复的编码系数,其中系数上的 Lp 范数可以确保子空间表示的联合稀疏性,而重构误差上的 Lp 范数可以处理异常值追踪。之后,ALRR 将系数作为自适应权重返回给局部 RPCA,以在反向表示过程中更新 PCs 和字典。因此,ALRR 被视为具有自适应权重的局部 RPCA 与具有自表达低秩字典的稀疏 LRR 的集成。为了使 ALRR 能够有效地处理外部数据,还推导了一种可以通过嵌入直接从数据中提取特征的投影 ALRR。为了解决基于 Lp 范数的最小化问题,提出了一种基于迭代收缩/阈值(IST)方法的新迭代方案。与其他相关标准的关系分析表明,我们的方法更具通用性。视觉和数值结果证明了我们的算法在表示方面的有效性。