Translational Neurodegeneration Section Albrecht Kossel, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany.
Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, University of Rostock, 18147 Rostock, Germany.
Int J Mol Sci. 2020 Oct 16;21(20):7667. doi: 10.3390/ijms21207667.
Oxidative stress (OS) represents a state of an imbalanced amount of reactive oxygen species (ROS) and/or a hampered efficacy of the antioxidative defense system. Cells of the central nervous system are particularly sensitive to OS, as they have a massive need of oxygen to maintain proper function. Consequently, OS represents a common pathophysiological hallmark of neurodegenerative diseases and is discussed to contribute to the neurodegeneration observed amongst others in Alzheimer's disease and Parkinson's disease. In this context, accumulating evidence suggests that OS is involved in the pathophysiology of Niemann-Pick type C1 disease (NPC1). NPC1, a rare hereditary neurodegenerative disease, belongs to the family of lysosomal storage disorders. A major hallmark of the disease is the accumulation of cholesterol and other glycosphingolipids in lysosomes. Several studies describe OS both in murine in vivo and in vitro NPC1 models. However, studies based on human cells are limited to NPC1 patient-derived fibroblasts. Thus, we analyzed OS in a human neuronal model based on NPC1 patient-specific induced pluripotent stem cells (iPSCs). Higher ROS levels, as determined by DCF (dichlorodihydrofluorescein) fluorescence, indicated oxidative stress in all NPC1-deficient cell lines. This finding was further supported by reduced superoxide dismutase (SOD) activity. The analysis of mRNA and protein levels of SOD1 and SOD2 did not reveal any difference between control cells and NPC1-deficient cells. Interestingly, we observed a striking decrease in catalase mRNA and protein levels in all NPC1-deficient cell lines. As catalase is a key enzyme of the cellular antioxidative defense system, we concluded that the lack of catalase contributes to the elevated ROS levels observed in NPC1-deficient cells. Thus, a restitution of a physiological catalase level may pose an intervention strategy to rescue NPC1-deficient cells from the repercussions of oxidative stress contributing to the neurodegeneration observed in NPC1.
氧化应激(OS)代表活性氧(ROS)的不平衡量和/或抗氧化防御系统的作用受阻的状态。中枢神经系统的细胞对 OS 特别敏感,因为它们需要大量的氧气来维持正常的功能。因此,OS 是神经退行性疾病的常见病理生理学标志,并被认为有助于阿尔茨海默病和帕金森病等观察到的神经退行性变。在这方面,越来越多的证据表明 OS 参与了尼曼-匹克 C1 型疾病(NPC1)的病理生理学。NPC1 是一种罕见的遗传性神经退行性疾病,属于溶酶体贮积症家族。该疾病的一个主要标志是溶酶体中胆固醇和其他糖脂的积累。几项研究描述了 NPC1 动物体内和体外模型中的 OS。然而,基于人类细胞的研究仅限于 NPC1 患者来源的成纤维细胞。因此,我们在基于 NPC1 患者特异性诱导多能干细胞(iPSC)的人类神经元模型中分析了 OS。通过 DCF(二氯二氢荧光素)荧光测定,ROS 水平升高表明所有 NPC1 缺陷细胞系均存在氧化应激。这一发现进一步得到了超氧化物歧化酶(SOD)活性降低的支持。SOD1 和 SOD2 的 mRNA 和蛋白水平分析并未显示对照细胞与 NPC1 缺陷细胞之间存在任何差异。有趣的是,我们观察到所有 NPC1 缺陷细胞系中的过氧化氢酶 mRNA 和蛋白水平明显下降。由于过氧化氢酶是细胞抗氧化防御系统的关键酶,我们得出结论,过氧化氢酶的缺乏导致 NPC1 缺陷细胞中观察到的 ROS 水平升高。因此,恢复生理过氧化氢酶水平可能是一种干预策略,可以使 NPC1 缺陷细胞免受氧化应激对观察到的 NPC1 神经退行性变的影响。