Suppr超能文献

基于空气污染廓线构建空气质量指数的新方法。

A novel method to construct an air quality index based on air pollution profiles.

机构信息

School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China.

School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China.

出版信息

Int J Hyg Environ Health. 2018 Jan;221(1):17-26. doi: 10.1016/j.ijheh.2017.09.012. Epub 2017 Sep 29.

Abstract

BACKGROUND

Air quality indices based on the maximum of sub-indices of pollutants are easy to produce and help quantify the degree of air pollution. However, they discount the additive effects of multiple pollutants and are only sensitive to changes in highest sub-index.

OBJECTIVES

We propose a simple and concise method to construct an air quality index that takes into account additive effects of multiple pollutants and evaluate the extent to which this index predicts health effects.

MATERIALS AND METHODS

We obtained concentrations of four criteria pollutants: particulate matter with aerodynamic diameter ≤ 10μm (PM), sulphur dioxide (SO), nitrogen dioxide (NO) and ozone (O) and daily admissions to Hong Kong hospitals for cardiovascular and respiratory diseases for all ages and those 65 years or older for years 2001-2012. We derived sub-indices of the four criteria pollutants, calculated by normalizing pollutant concentrations to their respective short-term WHO Air Quality Guidelines (WHO AQG). We aggregated the sub-indices using the root-mean-power function with an optimal power to form an overall air quality index. The optimal power was determined by minimizing the sum of over- and under-estimated days. We then assessed associations between the pollution bands of the index and cardiovascular and respiratory admissions using a time-stratified case-crossover design adjusted for ambient temperature, relative humidity and influenza epidemics. Further, we conducted case-crossover analyses using the Hong Kong air quality data with the respective standards and classification of pollution bands of the China Air Quality Index (AQI), the United Kingdom Daily AQI (DAQI), and the United States Environmental Protection Agency (USEPA) AQI.

RESULTS

The mean concentrations of PM and SO based on maximum 3-h mean exceeded the WHO AQG by 37% and 50%, respectively. We identified the combined condition of observed high-pollution days as either at least one pollutant > 1.5×WHO AQG or at least two pollutants > 1.0×WHO AQG to characterize the typical pollution profiles over the study period, which resulted in the optimal power=3.0. The distribution of days in different pollution bands of the index was: 5.8% for "Low" (0-50), 37.6% for "Moderate" (51-100), 31.1% for "High" (101-150), 14.7% for "Very High" (151-200), and 10.8% for "Serious" (201+). For cardiovascular and respiratory admissions, there were significant associations with the pollution bands of the index for all ages and those 65 years or older. The trends of increasing pollution bands in relation to increasing excess risks of cardiovascular and respiratory admissions were significant for the proposed index, the China AQI, the UK DAQI and the USEPA AQI (P value for test for linear trend < 0.0001), suggesting a dose-response relation.

CONCLUSIONS

We have developed a simple and concise method to construct an air quality index that accounts for multiple pollutants to quantify air quality conditions for Hong Kong. Further developments are needed in order to support the extension of the method to other settings.

摘要

背景

基于污染物子指数最大值的空气质量指数易于生成,并有助于量化空气污染程度。然而,它们忽略了多种污染物的累加效应,并且仅对最高子指数的变化敏感。

目的

我们提出了一种简单而简洁的方法来构建空气质量指数,该指数考虑了多种污染物的累加效应,并评估了该指数预测健康影响的程度。

材料和方法

我们获取了 2001 年至 2012 年期间香港所有年龄段和 65 岁及以上人群的四种标准污染物(空气动力学直径≤10μm 的颗粒物(PM)、二氧化硫(SO)、二氧化氮(NO)和臭氧(O))的浓度以及因心血管和呼吸道疾病住院的日数。我们通过将污染物浓度归一化为各自的短期世界卫生组织空气质量指南(WHO AQG)来计算这四种标准污染物的子指数。我们使用均方根幂函数(optimal power)对这些子指数进行聚合,以形成一个整体的空气质量指数。最优幂通过最小化高估和低估天数的总和来确定。然后,我们使用时间分层病例交叉设计,根据环境温度、相对湿度和流感流行情况,评估了指数的污染带与心血管和呼吸道住院之间的关联。此外,我们使用香港空气质量数据进行了病例交叉分析,使用了各自的标准以及中国空气质量指数(AQI)、英国每日空气质量指数(DAQI)和美国环境保护署(USEPA)AQI 的污染带分类。

结果

基于 3 小时最大浓度的 PM 和 SO 的平均值分别超过了 WHO AQG 的 37%和 50%。我们确定了观察到的高污染日的综合条件为至少一种污染物>1.5×WHO AQG 或至少两种污染物>1.0×WHO AQG,以描述研究期间的典型污染特征,这导致最优幂=3.0。指数不同污染带的天数分布为:“低”(0-50)为 5.8%,“中”(51-100)为 37.6%,“高”(101-150)为 31.1%,“很高”(151-200)为 14.7%,“严重”(201+)为 10.8%。对于心血管和呼吸道住院,所有年龄段和 65 岁及以上人群的指数污染带均与心血管和呼吸道住院存在显著关联。对于所提出的指数、中国 AQI、英国 DAQI 和美国 USEPA AQI,与心血管和呼吸道住院的关联随着污染带的增加而呈现出显著的递增趋势(P 值<0.0001),这表明存在剂量-反应关系。

结论

我们已经开发了一种简单而简洁的方法来构建空气质量指数,该指数考虑了多种污染物,以量化香港的空气质量状况。为了支持该方法在其他环境中的推广,还需要进一步的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验