College of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
Smart Agriculture Engineering Technology Research Center of Guangdong Higher Education Institues, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
PLoS One. 2021 Jul 23;16(7):e0254179. doi: 10.1371/journal.pone.0254179. eCollection 2021.
Environmental quality is a major factor that directly impacts waterfowl productivity. Accurate prediction of pollution index (PI) is the key to improving environmental management and pollution control. This study applied a new neural network model called temporal convolutional network and a denoising algorithm called wavelet transform (WT) for predicting future 12-, 24-, and 48-hour PI values at a waterfowl farm in Shanwei, China. The temporal convoluted network (TCN) model performance was compared with that of recurrent architectures with the same capacity, long-short time memory neural network (LSTM), and gated recurrent unit (GRU). Denoised environmental data, including ammonia, temperature, relative humidity, carbon dioxide (CO2), and total suspended particles (TSP), were used to construct the forecasting model. The simulation results showed that the TCN model in general produced a more precise PI prediction and provided the highest prediction accuracy for all phases (MAE = 0.0842, 0.0859, and 0.1115; RMSE = 0.0154, 0.0167, and 0.0273; R2 = 0.9789, 0.9791, and 0.9635). The PI assessment prediction model based on TCN exhibited the best prediction accuracy and general performance compared with other parallel forecasting models and is a suitable and useful tool for predicting PI in waterfowl farms.
环境质量是直接影响水禽生产力的主要因素。准确预测污染指数(PI)是改善环境管理和污染控制的关键。本研究应用了一种新的神经网络模型,称为时间卷积网络(TCN),以及一种去噪算法,称为小波变换(WT),以预测中国汕尾某水禽养殖场未来 12、24 和 48 小时的 PI 值。TCN 模型的性能与具有相同容量的递归架构(长短期记忆神经网络(LSTM)和门控循环单元(GRU))进行了比较。使用去噪后的环境数据(包括氨、温度、相对湿度、二氧化碳(CO2)和总悬浮颗粒物(TSP))构建了预测模型。模拟结果表明,TCN 模型通常可以更精确地预测 PI,并为所有阶段提供最高的预测精度(平均绝对误差=0.0842、0.0859 和 0.1115;均方根误差=0.0154、0.0167 和 0.0273;R2=0.9789、0.9791 和 0.9635)。与其他并行预测模型相比,基于 TCN 的 PI 评估预测模型表现出最佳的预测精度和总体性能,是预测水禽养殖场 PI 的合适且有用的工具。