Suppr超能文献

使用肺宏观模式(LMPS)通过无监督学习发现肺气肿亚型的生成方法:梅奥诊所慢性阻塞性肺疾病(COPD)研究

GENERATIVE METHOD TO DISCOVER EMPHYSEMA SUBTYPES WITH UNSUPERVISED LEARNING USING LUNG MACROSCOPIC PATTERNS (LMPS): THE MESA COPD STUDY.

作者信息

Song Jingkuan, Yang Jie, Smith Benjamin, Balte Pallavi, Hoffman Eric A, Barr R Graham, Laine Andrew F, Angelini Elsa D

机构信息

Department of Biomedical Engineering, Columbia University, New York, NY, USA.

Department of Medicine, Columbia University Medical Center, New York, NY, USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2017 Apr;2017:375-378. doi: 10.1109/ISBI.2017.7950541. Epub 2017 Jun 19.

Abstract

Pulmonary emphysema overlaps considerably with chronic obstructive pulmonary disease (COPD), and is traditionally subcategorized into three subtypes: centrilobular emphysema (CLE), panlobular emphysema (PLE) and paraseptal emphysema (PSE). Automated classification methods based on supervised learning are generally based upon the current definition of emphysema subtypes, while unsupervised learning of texture patterns enables the objective discovery of possible new radiological emphysema subtypes. In this work, we use a variant of the Latent Dirichlet Allocation (LDA) model to discover lung macroscopic patterns (LMPs) in an unsupervised way from lung regions that encode emphysematous areas. We evaluate the possible utility of the LMPs as potential novel emphysema subtypes via measuring their level of reproducibility when varying the learning set and by their ability to predict traditional radiological emphysema subtypes. Experimental results show that our algorithm can discover highly reproducible LMPs, that predict traditional emphysema subtypes.

摘要

肺气肿与慢性阻塞性肺疾病(COPD)有很大重叠,传统上可细分为三种亚型:小叶中心型肺气肿(CLE)、全小叶型肺气肿(PLE)和间隔旁肺气肿(PSE)。基于监督学习的自动分类方法通常基于肺气肿亚型的当前定义,而纹理模式的无监督学习能够客观地发现可能的新的放射学肺气肿亚型。在这项工作中,我们使用潜在狄利克雷分配(LDA)模型的一个变体,以无监督方式从编码肺气肿区域的肺区域中发现肺宏观模式(LMP)。我们通过测量LMP在改变学习集时的可重复性水平以及它们预测传统放射学肺气肿亚型的能力,评估LMP作为潜在新型肺气肿亚型的可能效用。实验结果表明,我们的算法能够发现高度可重复的LMP,这些LMP能够预测传统的肺气肿亚型。

相似文献

本文引用的文献

2
Unsupervised Discovery of Emphysema Subtypes in a Large Clinical Cohort.在大型临床队列中对肺气肿亚型进行无监督发现
Mach Learn Med Imaging. 2016 Oct;10019:180-187. doi: 10.1007/978-3-319-47157-0_22. Epub 2016 Oct 1.
3
Object Discovery: Soft Attributed Graph Mining.目标发现:软属性图挖掘。
IEEE Trans Pattern Anal Mach Intell. 2016 Mar;38(3):532-45. doi: 10.1109/TPAMI.2015.2456892.
6
Maps of random walks on complex networks reveal community structure.复杂网络上随机游走的图谱揭示了群落结构。
Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1118-23. doi: 10.1073/pnas.0706851105. Epub 2008 Jan 23.
7
Finding scientific topics.寻找科学主题。
Proc Natl Acad Sci U S A. 2004 Apr 6;101 Suppl 1(Suppl 1):5228-35. doi: 10.1073/pnas.0307752101. Epub 2004 Feb 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验