Song Jingkuan, Yang Jie, Smith Benjamin, Balte Pallavi, Hoffman Eric A, Barr R Graham, Laine Andrew F, Angelini Elsa D
Department of Biomedical Engineering, Columbia University, New York, NY, USA.
Department of Medicine, Columbia University Medical Center, New York, NY, USA.
Proc IEEE Int Symp Biomed Imaging. 2017 Apr;2017:375-378. doi: 10.1109/ISBI.2017.7950541. Epub 2017 Jun 19.
Pulmonary emphysema overlaps considerably with chronic obstructive pulmonary disease (COPD), and is traditionally subcategorized into three subtypes: centrilobular emphysema (CLE), panlobular emphysema (PLE) and paraseptal emphysema (PSE). Automated classification methods based on supervised learning are generally based upon the current definition of emphysema subtypes, while unsupervised learning of texture patterns enables the objective discovery of possible new radiological emphysema subtypes. In this work, we use a variant of the Latent Dirichlet Allocation (LDA) model to discover lung macroscopic patterns (LMPs) in an unsupervised way from lung regions that encode emphysematous areas. We evaluate the possible utility of the LMPs as potential novel emphysema subtypes via measuring their level of reproducibility when varying the learning set and by their ability to predict traditional radiological emphysema subtypes. Experimental results show that our algorithm can discover highly reproducible LMPs, that predict traditional emphysema subtypes.
肺气肿与慢性阻塞性肺疾病(COPD)有很大重叠,传统上可细分为三种亚型:小叶中心型肺气肿(CLE)、全小叶型肺气肿(PLE)和间隔旁肺气肿(PSE)。基于监督学习的自动分类方法通常基于肺气肿亚型的当前定义,而纹理模式的无监督学习能够客观地发现可能的新的放射学肺气肿亚型。在这项工作中,我们使用潜在狄利克雷分配(LDA)模型的一个变体,以无监督方式从编码肺气肿区域的肺区域中发现肺宏观模式(LMP)。我们通过测量LMP在改变学习集时的可重复性水平以及它们预测传统放射学肺气肿亚型的能力,评估LMP作为潜在新型肺气肿亚型的可能效用。实验结果表明,我们的算法能够发现高度可重复的LMP,这些LMP能够预测传统的肺气肿亚型。