Yang Jie, Angelini Elsa D, Smith Benjamin M, Austin John H M, Hoffman Eric A, Bluemke David A, Barr R Graham, Laine Andrew F
Dept. of Biomedical Engineering, Columbia University, New York, NY, USA.
Dept. of Radiology, Columbia University Medical Center, New York, NY, USA.
Med Comput Vis Bayesian Graph Models Biomed Imaging (2016). 2017;2017:69-80. doi: 10.1007/978-3-319-61188-4_7. Epub 2017 Jul 1.
Pulmonary emphysema is traditionally subcategorized into three subtypes, which have distinct radiological appearances on computed tomography (CT) and can help with the diagnosis of chronic obstructive pulmonary disease (COPD). Automated texture-based quantification of emphysema subtypes has been successfully implemented via supervised learning of these three emphysema subtypes. In this work, we demonstrate that unsupervised learning on a large heterogeneous database of CT scans can generate texture prototypes that are visually homogeneous and distinct, reproducible across subjects, and capable of predicting accurately the three standard radiological subtypes. These texture prototypes enable automated labeling of lung volumes, and open the way to new interpretations of lung CT scans with finer subtyping of emphysema.
传统上,肺气肿可细分为三种亚型,它们在计算机断层扫描(CT)上具有不同的影像学表现,有助于慢性阻塞性肺疾病(COPD)的诊断。通过对这三种肺气肿亚型进行监督学习,已经成功实现了基于纹理的肺气肿亚型自动量化。在这项工作中,我们证明了在一个大型异质性CT扫描数据库上进行无监督学习可以生成视觉上均匀且不同、可在不同受试者之间重现、并能够准确预测三种标准放射学亚型的纹理原型。这些纹理原型能够对肺容积进行自动标记,并为肺气肿更精细亚型的肺CT扫描新解释开辟了道路。