Yang Jie, Vetterli Thomas, Balte Pallavi P, Barr R Graham, Laine Andrew F, Angelini Elsa D
Department of Biomedical Engineering, Columbia University, NY, USA.
Department of Medicine, Columbia University Medical Center, New York, NY, USA.
Proc IEEE Int Symp Biomed Imaging. 2019 Apr;2019:289-293. doi: 10.1109/isbi.2019.8759525. Epub 2019 Jul 11.
Emphysema quantification and sub-typing is actively studied on cohorts of full-lung high-resolution CT (HRCT) scans, with promising results. Transfer of quantification and classification tools to cardiac CT scans, which involve 70% of the lungs, is challenging due to lower image resolution and degradation of textural patterns. In this study, we propose an original deep-learning domain-adaptation framework to use a pre-existing dictionary of lung texture patterns (LTP), learned on gold-standard full-lung HRCT scans, to label emphysema regions on cardiac CT scans. The method exploits convolutional neural networks (CNNs) trained for: 1) supervised lung texture classification on cardiac images, and 2) adversarial learning to discriminate between real and cardiac images. Combination of the classification and adversarial tasks enables to label real cardiac CT scans, and is evaluated on the MESA cohort (N = 15,357 scans). Our results show that image features derived from the adversarial training preserve the labeling accuracy on scans. LTP histogram signatures generated on 4,315 longitudinal pairs of cardiac CT scans, show high level of consistency over time and scanner generations. The ability to robustly label emphysema texture patterns on cardiac CT scans will enable large-scale longitudinal studies over 10 years of follow-up, for better understanding of the disease progression.
肺气肿的量化和亚型分类正在全肺高分辨率CT(HRCT)扫描队列中积极研究,取得了有前景的结果。由于图像分辨率较低和纹理模式退化,将量化和分类工具应用于涉及70%肺组织的心脏CT扫描具有挑战性。在本研究中,我们提出了一种原创的深度学习域适应框架,利用在金标准全肺HRCT扫描上学习到的预先存在的肺纹理模式(LTP)字典,对心脏CT扫描上的肺气肿区域进行标记。该方法利用了经过训练的卷积神经网络(CNN):1)对心脏图像进行有监督的肺纹理分类;2)进行对抗学习以区分真实心脏图像和其他图像。分类任务和对抗任务的结合能够对真实心脏CT扫描进行标记,并在MESA队列(N = 15357次扫描)上进行了评估。我们结果表明,从对抗训练中获得的图像特征在扫描中保持了标记准确性。在4315对纵向心脏CT扫描上生成的LTP直方图特征显示出随时间和扫描仪代际的高度一致性。在心脏CT扫描上稳健标记肺气肿纹理模式的能力将使我们能够在10年的随访中进行大规模纵向研究,以更好地了解疾病进展。