Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea.
Acc Chem Res. 2017 Nov 21;50(11):2684-2692. doi: 10.1021/acs.accounts.7b00259. Epub 2017 Oct 9.
Nanostructured materials such as porous metal oxides, metal nanoparticles, porous carbons, and their composites have been intensively studied due to their applications, including energy conversion and storage devices, catalysis, and gas storage. Appropriate precursors and synthetic methods are chosen for synthesizing the target materials. About a decade ago, metal-organic frameworks (MOFs) and coordination polymers (CPs) emerged as new precursors for these nanomaterials because they contain both organic and inorganic species that can play parallel roles as both a template and a precursor under given circumstances. Thermal conversions of MOFs offer a promising toolbox for synthesizing functional nanomaterials that are difficult to obtain using conventional methods. Although understanding the conversion mechanism is important for designing MOF precursors for the synthesis of nanomaterials with desired physicochemical properties, comprehensive discussions revealing the transformation mechanism remain insufficient. This Account reviews the utilization of MOFs/CPs as precursors and their transformation into functional nanomaterials with a special emphasis on understanding the relationship between the intrinsic nature of the parent MOFs and the daughter nanomaterials while discussing various experimental approaches based on mechanistic insights. We discuss nanomaterials categorized by materials such as metal-based nanomaterials and porous carbons. For metal-based nanomaterials transformed from MOFs, the nature of metal ions in the MOF scaffolds affects the physicochemical properties of the resultant materials including the phase, composite, and morphology of nanomaterials. Organic ligands are also involved in the in situ chemical reactions with metal species during thermal conversion. We describe these conversion mechanisms by classifying the phase of metal components in the resultant materials. Along with the metal species, carbon is a major element in MOFs, and thus, the appropriate choice of precursor MOFs and heat treatment can be expected to yield carbon-based nanomaterials. We address the relationship between the nature of the parent MOF and the porosity of the daughter carbon material-a controversial issue in the synthesis of porous carbons. Based on an understanding of the mechanism of MOF conversion, morphologically or compositionally advanced materials are synthesized by adopting appropriate MOF precursors and thermolysis conditions. Despite the progressive understanding of conversion phenomena of MOFs/CPs, this research field still has rooms to be explored and developed, ultimately in order to precisely control the properties of resultant nanomaterials. In this sense, we should pay more attention to the mechanism investigations of MOF conversion. We believe this Account will facilitate a deeper understanding of MOF/CP conversion routes and will accelerate further development in this field.
由于在能源转换和存储装置、催化和气体存储等方面的应用,纳米结构材料(如多孔金属氧化物、金属纳米粒子、多孔碳及其复合材料)受到了广泛的研究。选择合适的前体和合成方法来合成目标材料。大约十年前,金属-有机骨架(MOFs)和配位聚合物(CPs)作为这些纳米材料的新前体出现,因为它们既包含有机物种,也包含无机物种,在特定条件下可以同时作为模板和前体发挥作用。MOFs 的热转化为合成用传统方法难以获得的功能纳米材料提供了一个很有前途的工具包。尽管了解转化机制对于设计用于合成具有所需物理化学性质的纳米材料的 MOF 前体很重要,但对于揭示转化机制的全面讨论仍然不足。本综述重点介绍了利用 MOFs/CPs 作为前体,并将其转化为具有功能的纳米材料,特别强调了在讨论基于机制见解的各种实验方法的同时,理解母体 MOFs 的固有性质与子纳米材料之间的关系。我们按金属基纳米材料和多孔碳等材料对纳米材料进行分类。对于从 MOFs 转化而来的金属基纳米材料,MOF 支架中的金属离子的性质会影响所得材料的物理化学性质,包括纳米材料的相、复合材料和形态。在热转化过程中,有机配体也参与与金属物种的原位化学反应。我们通过将所得材料中金属成分的相分类来描述这些转化机制。与金属物种一起,碳是 MOFs 的主要元素,因此,适当选择前体 MOFs 和热处理可以预期得到碳基纳米材料。我们讨论了母体 MOF 的性质与子碳材料孔隙率之间的关系,这是多孔碳合成中的一个有争议的问题。基于对 MOF 转化机制的理解,通过采用合适的 MOF 前体和热解条件,可以合成形态或组成上先进的材料。尽管对 MOFs/CPs 转化现象的认识不断深入,但这个研究领域仍有很大的发展空间,最终目的是精确控制所得纳米材料的性质。从这个意义上说,我们应该更加关注 MOF 转化的机制研究。我们相信,本综述将有助于更深入地了解 MOF/CP 转化途径,并将加速该领域的进一步发展。