Kadota Kentaro, Horike Satoshi
Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan.
Acc Chem Res. 2024 Nov 5;57(21):3206-3216. doi: 10.1021/acs.accounts.4c00519. Epub 2024 Oct 14.
ConspectusThe conversion of carbon dioxide (CO) to value-added functional materials is a major challenge in realizing a carbon-neutral society. Although CO is an attractive renewable carbon resource with high natural abundance, its chemical inertness has made the conversion of CO into materials with the desired structures and functionality difficult. Molecular-based porous materials, such as metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs), are designable porous solids constructed from molecular-based building units. While MOF/COFs attract wide attention as functional porous materials, the synthetic methods to convert CO into MOF/COFs have been unexplored due to the lack of synthetic guidelines for converting CO into molecular-based building units.In this Account, we describe state-of-the-art studies on the conversion of CO into MOF/COFs. First, we outline the key design principles of CO-derived molecular building units for the construction of porous structures. The appropriate design of reactivity and the positioning of bridging sites in CO-derived molecular building units is essential for constructing CO-derived MOF/COFs with desired structures and properties. The synthesis of CO-derived MOF/COFs involves both the transformation of CO into building units and the formation of extended structures of the MOF/COFs. We categorized the synthetic methods into three types as follows: a one-step synthesis (); a one-pot synthesis without workup (); and a multistep synthesis which needs workup ().We demonstrate that borohydride can convert CO into formate and formylhydroborate that serve as a bridging linker for MOFs in the Type-I and Type-II synthesis, representing the first examples of CO-derived MOFs. The electronegativity of coexisting metal ions determines the selective conversion of CO into formate and formylhydroborate. Formylhydroborate-based MOFs exhibit flexible pore sizes controlled by the pressure of CO during synthesis. In pursuit of highly porous structures, we present the Type-I synthesis of MOFs from CO via the in situ transformation of CO into carbamate linkers by amines. The direct conversion of diluted CO (400 ppm) in air into carbamate-based MOFs is also feasible. Coordination interactions stabilize the intrinsically labile carbamate in the MOF lattice. A recent study demonstrates that the Type-III synthesis using alkynylsilane precursors enables the synthesis of highly porous and stable carboxylate-based MOFs from CO, which exhibit catalytic activity in CO conversion. We also extended the synthesis of MOFs from CO to COFs. The Type-III synthesis using a formamide monomer affords stable CO-derived COFs showing proton conduction properties. The precise design of CO-derived building units enables expansion of the structures and functionalities of CO-derived MOF/COFs. Finally, we propose future challenges in this field: (i) expanding structural diversity through synthesis using external fields and (ii) exploring unique functionalities of CO-derived MOF/COFs, such as carriers for CO capture and precursors for CO transformation. We anticipate that this Account will lay the foundation for exploring new chemistry of the conversion of CO into porous materials.
概述
将二氧化碳(CO₂)转化为增值功能材料是实现碳中和社会的一项重大挑战。尽管CO₂是一种具有高天然丰度的有吸引力的可再生碳资源,但其化学惰性使得将CO₂转化为具有所需结构和功能的材料变得困难。基于分子的多孔材料,如金属有机框架(MOF)和共价有机框架(COF),是由基于分子的构建单元构成的可设计多孔固体。虽然MOF/COF作为功能多孔材料备受关注,但由于缺乏将CO₂转化为基于分子的构建单元的合成指导方针,将CO₂转化为MOF/COF的合成方法尚未得到探索。
在本综述中,我们描述了将CO₂转化为MOF/COF的最新研究。首先,我们概述了用于构建多孔结构的CO₂衍生分子构建单元的关键设计原则。在CO₂衍生的分子构建单元中,反应性的适当设计和桥连位点的定位对于构建具有所需结构和性能的CO₂衍生的MOF/COF至关重要。CO₂衍生的MOF/COF的合成涉及将CO₂转化为构建单元以及MOF/COF扩展结构的形成。我们将合成方法分为以下三种类型:一步合成( );无需后处理一锅合成( );以及需要后处理的多步合成( )。
我们证明硼氢化物可以将CO₂转化为甲酸盐和甲酰基硼氢化物,它们在I型和II型合成中作为MOF的桥连连接体,这代表了CO₂衍生的MOF的首个实例。共存金属离子的电负性决定了CO₂选择性转化为甲酸盐和甲酰基硼氢化物。基于甲酰基硼氢化物的MOF表现出在合成过程中由CO₂压力控制的灵活孔径。为了追求高孔隙率结构,我们介绍了通过胺将CO₂原位转化为氨基甲酸酯连接体从而从CO₂合成MOF的I型合成方法。将空气中稀释的CO₂(400 ppm)直接转化为基于氨基甲酸酯的MOF也是可行的。配位相互作用稳定了MOF晶格中本质上不稳定 的氨基甲酸酯。最近的一项研究表明,使用炔基硅烷前体的III型合成能够从CO₂合成高度多孔且稳定的基于羧酸盐的MOF,它们在CO₂转化中表现出催化活性。我们还将从CO₂合成MOF的方法扩展到了COF。使用甲酰胺单体的III型合成提供了具有质子传导性能的稳定的CO₂衍生的COF。CO₂衍生构建单元的精确设计能够扩展CO₂衍生的MOF/COF的结构和功能。最后,我们提出了该领域未来的挑战:(i)通过使用外部场合成来扩展结构多样性;(ii)探索CO₂衍生的MOF/COF的独特功能,如用于CO₂捕获的载体和用于CO₂转化的前体。我们预计本综述将为探索将CO₂转化为多孔材料的新化学奠定基础。