MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology , Harbin 150001, China.
Materials and Process Simulation Center (MSC) and Joint Center for Artificial Photosynthesis (JCAP), California Institute of Technology , Pasadena, California 91125, United States.
J Am Chem Soc. 2017 Nov 8;139(44):15608-15611. doi: 10.1021/jacs.7b09251. Epub 2017 Oct 11.
Wide application of carbon dioxide (CO) electrochemical energy storage requires catalysts with high mass activity. Alloy catalysts can achieve superior performance to single metals while reducing the cost by finely tuning the composition and morphology. We used in silico quantum mechanics rapid screening to identify Au-Fe as a candidate improving CO reduction and then synthesized and tested it experimentally. The synthesized Au-Fe alloy catalyst evolves quickly into a stable Au-Fe core-shell nanoparticle (AuFe-CSNP) after leaching out surface Fe. This AuFe-CSNP exhibits exclusive CO selectivity, long-term stability, nearly a 100-fold increase in mass activity toward CO reduction compared with Au NP, and 0.2 V lower in overpotential. Calculations show that surface defects due to Fe leaching contribute significantly to decrease the overpotential.
广泛应用二氧化碳(CO)电化学储能需要具有高质量活性的催化剂。合金催化剂可以通过精细调整组成和形态来达到优于单一金属的性能,同时降低成本。我们使用了基于量子力学的快速筛选方法,确定 Au-Fe 是一种提高 CO 还原性能的候选材料,然后进行了合成和实验测试。合成的 Au-Fe 合金催化剂在浸出表面 Fe 后迅速转化为稳定的 Au-Fe 核壳纳米颗粒(AuFe-CSNP)。与 Au NP 相比,这种 AuFe-CSNP 表现出独特的 CO 选择性、长期稳定性,对 CO 还原的质量活性提高了近 100 倍,过电势降低了 0.2 V。计算表明,由于 Fe 浸出导致的表面缺陷对降低过电势有显著贡献。