Institute of Coal Chemistry, Chinese Academy of Sciences , Taiyuan, Shanxi 030001, China.
Synfuels China , Beijing 100195, China.
J Am Chem Soc. 2016 Jul 6;138(26):8120-5. doi: 10.1021/jacs.6b02878. Epub 2016 Jun 20.
Conversion of the greenhouse gas carbon dioxide (CO2) to value-added products is an important challenge for sustainable energy research, and nanomaterials offer a broad class of heterogeneous catalysts for such transformations. Here we report a molecular surface functionalization approach to tuning gold nanoparticle (Au NP) electrocatalysts for reduction of CO2 to CO. The N-heterocyclic (NHC) carbene-functionalized Au NP catalyst exhibits improved faradaic efficiency (FE = 83%) for reduction of CO2 to CO in water at neutral pH at an overpotential of 0.46 V with a 7.6-fold increase in current density compared to that of the parent Au NP (FE = 53%). Tafel plots of the NHC carbene-functionalized Au NP (72 mV/decade) vs parent Au NP (138 mV/decade) systems further show that the molecular ligand influences mechanistic pathways for CO2 reduction. The results establish molecular surface functionalization as a complementary approach to size, shape, composition, and defect control for nanoparticle catalyst design.
将温室气体二氧化碳(CO2)转化为增值产品是可持续能源研究的一个重要挑战,而纳米材料为这种转化提供了广泛的多相催化剂。在这里,我们报告了一种分子表面功能化方法,用于调整金纳米颗粒(Au NP)电催化剂,以将 CO2 还原为 CO。N-杂环(NHC)卡宾功能化的 Au NP 催化剂在中性 pH 条件下,在 0.46 V 的过电势下,将 CO2 还原为 CO 的法拉第效率(FE = 83%)得到提高,与母体 Au NP(FE = 53%)相比,电流密度增加了 7.6 倍。NHC 卡宾功能化的 Au NP(72 mV/decade)与母体 Au NP(138 mV/decade)系统的塔菲尔图进一步表明,分子配体影响 CO2 还原的机理途径。该结果确立了分子表面功能化是纳米颗粒催化剂设计中除尺寸、形状、组成和缺陷控制之外的一种补充方法。