Atherton Joseph, Jiang Kai, Stangier Marcel M, Luo Yanzhang, Hua Shasha, Houben Klaartje, van Hooff Jolien J E, Joseph Agnel-Praveen, Scarabelli Guido, Grant Barry J, Roberts Anthony J, Topf Maya, Steinmetz Michel O, Baldus Marc, Moores Carolyn A, Akhmanova Anna
Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK.
Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
Nat Struct Mol Biol. 2017 Nov;24(11):931-943. doi: 10.1038/nsmb.3483. Epub 2017 Oct 9.
CAMSAP and Patronin family members regulate microtubule minus-end stability and localization and thus organize noncentrosomal microtubule networks, which are essential for cell division, polarization and differentiation. Here, we found that the CAMSAP C-terminal CKK domain is widely present among eukaryotes and autonomously recognizes microtubule minus ends. Through a combination of structural approaches, we uncovered how mammalian CKK binds between two tubulin dimers at the interprotofilament interface on the outer microtubule surface. In vitro reconstitution assays combined with high-resolution fluorescence microscopy and cryo-electron tomography suggested that CKK preferentially associates with the transition zone between curved protofilaments and the regular microtubule lattice. We propose that minus-end-specific features of the interprotofilament interface at this site serve as the basis for CKK's minus-end preference. The steric clash between microtubule-bound CKK and kinesin motors explains how CKK protects microtubule minus ends against kinesin-13-induced depolymerization and thus controls the stability of free microtubule minus ends.
CAMSAP和Patronin家族成员调节微管负端的稳定性和定位,从而构建非中心体微管网络,这对于细胞分裂、极化和分化至关重要。在此,我们发现CAMSAP的C端CKK结构域广泛存在于真核生物中,并能自主识别微管负端。通过结合多种结构研究方法,我们揭示了哺乳动物CKK如何在外微管表面的原纤维间界面处结合于两个微管蛋白二聚体之间。体外重组实验结合高分辨率荧光显微镜和冷冻电子断层扫描表明,CKK优先与弯曲原纤维和规则微管晶格之间的过渡区结合。我们提出,该位点原纤维间界面的负端特异性特征是CKK偏好负端的基础。微管结合的CKK与驱动蛋白马达之间的空间冲突解释了CKK如何保护微管负端免受驱动蛋白-13诱导的解聚,从而控制游离微管负端的稳定性。