Institute of Neuroscience, Institute of Molecular Biology, and Howard Hughes Medical Institute (HHMI), University of Oregon, Eugene, Oregon 97403; email:
Annu Rev Cell Dev Biol. 2017 Oct 6;33:219-240. doi: 10.1146/annurev-cellbio-111315-125210.
A small pool of neural progenitors generates the vast diversity of cell types in the CNS. Spatial patterning specifies progenitor identity, followed by temporal patterning within progenitor lineages to expand neural diversity. Recent work has shown that in Drosophila, all neural progenitors (neuroblasts) sequentially express temporal transcription factors (TTFs) that generate molecular and cellular diversity. Embryonic neuroblasts use a lineage-intrinsic cascade of five TTFs that switch nearly every neuroblast cell division; larval optic lobe neuroblasts also use a rapid cascade of five TTFs, but the factors are completely different. In contrast, larval central brain neuroblasts undergo a major molecular transition midway through larval life, and this transition is regulated by a lineage-extrinsic cue (ecdysone hormone signaling). Overall, every neuroblast lineage uses a TTF cascade to generate diversity, illustrating the widespread importance of temporal patterning.
一小群神经祖细胞产生中枢神经系统中大量的细胞类型。空间模式决定了祖细胞的身份,然后在祖细胞谱系内进行时间模式划分,以扩大神经多样性。最近的研究表明,在果蝇中,所有的神经祖细胞(神经母细胞)依次表达时间转录因子(TTFs),这些因子产生分子和细胞多样性。胚胎神经母细胞使用内在的五个 TTF 级联反应,几乎每个神经母细胞分裂时都会切换;幼虫眼脑神经母细胞也使用快速的五个 TTF 级联反应,但这些因子完全不同。相比之下,幼虫中枢脑神经母细胞在幼虫生命中期经历了一个主要的分子转变,这个转变是由一个谱系外在的线索(蜕皮激素信号)调节的。总的来说,每个神经母细胞谱系都使用 TTF 级联反应来产生多样性,这说明了时间模式的广泛重要性。