Suppr超能文献

基因表达谱揭示了果蝇胚胎中枢神经系统中颚神经母细胞的个体身份和序列同源性。

Gene expression profiles uncover individual identities of gnathal neuroblasts and serial homologies in the embryonic CNS of Drosophila.

作者信息

Urbach Rolf, Jussen David, Technau Gerhard M

机构信息

Institute of Genetics, University of Mainz, Mainz D-55099, Germany

Institute of Genetics, University of Mainz, Mainz D-55099, Germany.

出版信息

Development. 2016 Apr 15;143(8):1290-301. doi: 10.1242/dev.133546.

Abstract

The numbers and types of progeny cells generated by neural stem cells in the developing CNS are adapted to its region-specific functional requirements. In Drosophila, segmental units of the CNS develop from well-defined patterns of neuroblasts. Here we constructed comprehensive neuroblast maps for the three gnathal head segments. Based on the spatiotemporal pattern of neuroblast formation and the expression profiles of 46 marker genes (41 transcription factors), each neuroblast can be uniquely identified. Compared with the thoracic ground state, neuroblast numbers are progressively reduced in labial, maxillary and mandibular segments due to smaller sizes of neuroectodermal anlagen and, partially, to suppression of neuroblast formation and induction of programmed cell death by the Hox gene Deformed Neuroblast patterns are further influenced by segmental modifications in dorsoventral and proneural gene expression. With the previously published neuroblast maps and those presented here for the gnathal region, all neuroectodermal neuroblasts building the CNS of the fly (ventral nerve cord and brain, except optic lobes) are now individually identified (in total 2×567 neuroblasts). This allows, for the first time, a comparison of the characteristics of segmental populations of stem cells and to screen for serially homologous neuroblasts throughout the CNS. We show that approximately half of the deutocerebral and all of the tritocerebral (posterior brain) and gnathal neuroblasts, but none of the protocerebral (anterior brain) neuroblasts, display serial homology to neuroblasts in thoracic/abdominal neuromeres. Modifications in the molecular signature of serially homologous neuroblasts are likely to determine the segment-specific characteristics of their lineages.

摘要

神经干细胞在发育中的中枢神经系统(CNS)中产生的子代细胞数量和类型,是根据其区域特异性功能需求进行调整的。在果蝇中,中枢神经系统的节段单元由明确的神经母细胞模式发育而来。在这里,我们构建了三个颚头部节段的综合神经母细胞图谱。基于神经母细胞形成的时空模式以及46个标记基因(41个转录因子)的表达谱,每个神经母细胞都能被独特地识别。与胸部的基础状态相比,由于神经外胚层原基较小,以及部分由于Hox基因Deformed对神经母细胞形成的抑制和程序性细胞死亡的诱导,唇节、上颌节和下颌节中的神经母细胞数量逐渐减少。神经母细胞模式还受到背腹侧和原神经基因表达的节段性修饰的进一步影响。结合之前发表的神经母细胞图谱以及这里展示的颚部区域图谱,现在已逐个识别出构建果蝇中枢神经系统(腹神经索和脑,除视叶外)的所有神经外胚层神经母细胞(总共2×567个神经母细胞)。这首次使得能够比较干细胞节段群体的特征,并在整个中枢神经系统中筛选出连续同源的神经母细胞。我们发现,大约一半的中脑和所有后脑(后脑)及颚部神经母细胞,但前脑(前脑)神经母细胞无一与胸/腹神经节中的神经母细胞显示连续同源性。连续同源神经母细胞分子特征的修饰可能决定其谱系的节段特异性特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7922/4852520/23419cc1b488/develop-143-133546-g1.jpg

相似文献

3
Progressive derivation of serially homologous neuroblast lineages in the gnathal CNS of Drosophila.
PLoS One. 2018 Feb 7;13(2):e0191453. doi: 10.1371/journal.pone.0191453. eCollection 2018.
5
Programmed cell death in the embryonic central nervous system of Drosophila melanogaster.
Development. 2007 Jan;134(1):105-16. doi: 10.1242/dev.02707.
7
Abdominal-B and caudal inhibit the formation of specific neuroblasts in the Drosophila tail region.
Development. 2013 Sep;140(17):3552-64. doi: 10.1242/dev.096099. Epub 2013 Jul 31.
8
Conservation and evolutionary modifications of neuroblast expression patterns in insects.
Dev Biol. 2014 Apr 1;388(1):103-16. doi: 10.1016/j.ydbio.2014.01.028. Epub 2014 Feb 10.
9
Molecular markers for identified neuroblasts in the developing brain of Drosophila.
Development. 2003 Aug;130(16):3621-37. doi: 10.1242/dev.00533.
10
Temporal Patterning in the Drosophila CNS.
Annu Rev Cell Dev Biol. 2017 Oct 6;33:219-240. doi: 10.1146/annurev-cellbio-111315-125210.

引用本文的文献

1
Hierarchical diversification of instinctual behavior neurons by lineage, birth order, and sex.
bioRxiv. 2025 Jun 3:2025.06.03.657692. doi: 10.1101/2025.06.03.657692.
2
Indirect neurogenesis in space and time.
Nat Rev Neurosci. 2024 Aug;25(8):519-534. doi: 10.1038/s41583-024-00833-x. Epub 2024 Jul 1.
3
Unfolding the ventral nerve center of chaetognaths.
Neural Dev. 2024 May 8;19(1):5. doi: 10.1186/s13064-024-00182-6.
4
Targeted RNAi screen identifies transcriptional mechanisms that prevent premature degeneration of adult photoreceptors.
Front Epigenet Epigenom. 2023;1. doi: 10.3389/freae.2023.1187980. Epub 2023 May 5.
7
Complete Connectomic Reconstruction of Olfactory Projection Neurons in the Fly Brain.
Curr Biol. 2020 Aug 17;30(16):3183-3199.e6. doi: 10.1016/j.cub.2020.06.042. Epub 2020 Jul 2.
8
Embryonic CNS Development: Neurogenesis, Gliogenesis, Cell Fate, and Differentiation.
Genetics. 2019 Dec;213(4):1111-1144. doi: 10.1534/genetics.119.300974.
9
Anterior CNS expansion driven by brain transcription factors.
Elife. 2019 Jul 4;8:e45274. doi: 10.7554/eLife.45274.
10
Expression of Mammalian BM88/CEND1 in Drosophila Affects Nervous System Development by Interfering with Precursor Cell Formation.
Neurosci Bull. 2019 Dec;35(6):979-995. doi: 10.1007/s12264-019-00386-5. Epub 2019 May 11.

本文引用的文献

1
The pattern of proliferation of the neuroblasts in the wild-type embryo of Drosophila melanogaster.
Rouxs Arch Dev Biol. 1987 Dec;196(8):473-485. doi: 10.1007/BF00399871.
2
Early neurogenesis in wild-typeDrosophila melanogaster.
Wilehm Roux Arch Dev Biol. 1984 Sep;193(5):308-325. doi: 10.1007/BF00848159.
4
A GAL4 driver resource for developmental and behavioral studies on the larval CNS of Drosophila.
Cell Rep. 2014 Aug 7;8(3):897-908. doi: 10.1016/j.celrep.2014.06.065. Epub 2014 Jul 31.
6
A systematic nomenclature for the insect brain.
Neuron. 2014 Feb 19;81(4):755-65. doi: 10.1016/j.neuron.2013.12.017.
9
Abdominal-B and caudal inhibit the formation of specific neuroblasts in the Drosophila tail region.
Development. 2013 Sep;140(17):3552-64. doi: 10.1242/dev.096099. Epub 2013 Jul 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验