Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida, USA.
Antimicrob Agents Chemother. 2017 Nov 22;61(12). doi: 10.1128/AAC.01268-17. Print 2017 Dec.
We previously optimized imipenem and tobramycin combination regimens against a double-resistant clinical isolate by using infection models, mechanism-based pharmacokinetic/pharmacodynamic modeling (MBM), and Monte Carlo simulations. The current study aimed to evaluate these regimens in a neutropenic murine thigh infection model and to characterize the time course of bacterial killing and regrowth via MBM. We studied monotherapies and combinations of imipenem with tobramycin against the double-resistant clinical isolate by using humanized dosing schemes. Viable count profiles of total and resistant populations were quantified over 24 h. Tobramycin monotherapy (7 mg/kg every 24 h [q24h] as a 0.5-h infusion) was ineffective. Imipenem monotherapies (continuous infusion of 4 or 5 g/day with a 1-g loading dose) yielded 2.47 or 2.57 log CFU/thigh killing at 6 h. At 24 h, imipenem at 4 g/day led to regrowth up to the initial inoculum (4.79 ± 0.26 log CFU/thigh), whereas imipenem at 5 g/day displayed 1.75 log killing versus the initial inoculum. The combinations (i.e., imipenem at 4 or 5 g/day plus tobramycin) provided a clear benefit, with bacterial killing of ≥2.51 or ≥1.50 log CFU/thigh compared to the respective most active monotherapy at 24 h. No colonies were detected on 3×MIC agar plates for combinations, whereas increased resistance (at 3×MIC) emerged for monotherapies (except imipenem at 5 g/day). MBM suggested that tobramycin considerably enhanced the imipenem target site concentration up to 2.6-fold. The combination regimens, rationally optimized via a translational modeling approach, demonstrated substantially enhanced bacterial killing and suppression of regrowth against a double-resistant isolate and are therefore promising for future clinical evaluation.
我们之前通过感染模型、基于机制的药代动力学/药效学建模(MBM)和蒙特卡罗模拟,优化了亚胺培南和妥布霉素联合治疗方案,以对抗一种双重耐药的临床分离株。本研究旨在通过中性粒细胞减少的鼠大腿感染模型评估这些方案,并通过 MBM 来描述细菌杀灭和再生长的时间过程。我们使用人源化给药方案研究了亚胺培南与妥布霉素单独治疗以及联合治疗对双重耐药临床分离株的效果。在 24 小时内定量分析了总菌和耐药菌的活菌计数曲线。妥布霉素单药治疗(7 mg/kg,每 24 小时 q24h,0.5 小时输注)无效。亚胺培南单药治疗(4 或 5 g/天连续输注,1 g 负荷剂量)在 6 小时时分别导致 2.47 或 2.57 log CFU/大腿的杀伤。在 24 小时时,4 g/天的亚胺培南导致再生长至初始接种物(4.79 ± 0.26 log CFU/大腿),而 5 g/天的亚胺培南显示与初始接种物相比,有 1.75 log 的杀伤。联合治疗(即 4 或 5 g/天的亚胺培南加妥布霉素)提供了明显的益处,与 24 小时时最有效的单药治疗相比,细菌杀灭率≥2.51 或≥1.50 log CFU/大腿。组合治疗在 3×MIC 琼脂平板上未检测到菌落,而单药治疗(除了 5 g/天的亚胺培南)出现了耐药性增加(在 3×MIC 时)。MBM 表明,妥布霉素使亚胺培南的靶位浓度显著增加了 2.6 倍。通过转化建模方法进行合理优化的联合治疗方案,对双重耐药分离株表现出显著增强的杀菌作用和抑制再生长作用,因此具有进一步临床评估的前景。