文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

定量影像特征引擎(QIFE):一个开源的、模块化的引擎,用于从容积医学影像中提取 3D 定量特征。

Quantitative Image Feature Engine (QIFE): an Open-Source, Modular Engine for 3D Quantitative Feature Extraction from Volumetric Medical Images.

机构信息

Department of Radiology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA.

Department of Electrical Engineering, Stanford University, 650 Serra Mall, Stanford, CA, 94305, USA.

出版信息

J Digit Imaging. 2018 Aug;31(4):403-414. doi: 10.1007/s10278-017-0019-x.


DOI:10.1007/s10278-017-0019-x
PMID:28993897
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6113159/
Abstract

The aim of this study was to develop an open-source, modular, locally run or server-based system for 3D radiomics feature computation that can be used on any computer system and included in existing workflows for understanding associations and building predictive models between image features and clinical data, such as survival. The QIFE exploits various levels of parallelization for use on multiprocessor systems. It consists of a managing framework and four stages: input, pre-processing, feature computation, and output. Each stage contains one or more swappable components, allowing run-time customization. We benchmarked the engine using various levels of parallelization on a cohort of CT scans presenting 108 lung tumors. Two versions of the QIFE have been released: (1) the open-source MATLAB code posted to Github, (2) a compiled version loaded in a Docker container, posted to DockerHub, which can be easily deployed on any computer. The QIFE processed 108 objects (tumors) in 2:12 (h/mm) using 1 core, and 1:04 (h/mm) hours using four cores with object-level parallelization. We developed the Quantitative Image Feature Engine (QIFE), an open-source feature-extraction framework that focuses on modularity, standards, parallelism, provenance, and integration. Researchers can easily integrate it with their existing segmentation and imaging workflows by creating input and output components that implement their existing interfaces. Computational efficiency can be improved by parallelizing execution at the cost of memory usage. Different parallelization levels provide different trade-offs, and the optimal setting will depend on the size and composition of the dataset to be processed.

摘要

本研究旨在开发一种开源、模块化、本地运行或基于服务器的 3D 放射组学特征计算系统,可在任何计算机系统上使用,并可集成到现有的工作流程中,以了解图像特征与临床数据(如生存)之间的关联并构建预测模型。QIFE 利用各种级别的并行化在多核系统上运行。它由一个管理框架和四个阶段组成:输入、预处理、特征计算和输出。每个阶段包含一个或多个可交换组件,允许在运行时进行自定义。我们使用不同级别的并行化在包含 108 个肺部肿瘤的 CT 扫描队列上对引擎进行了基准测试。已经发布了两个版本的 QIFE:(1)发布到 Github 的开源 MATLAB 代码,(2)一个编译版本加载到 Docker 容器中,并发布到 DockerHub,可以轻松部署在任何计算机上。QIFE 使用 1 个核心在 2:12(小时/分钟)内处理了 108 个对象(肿瘤),使用 4 个核心的对象级并行化在 1:04(小时/分钟)内处理了 108 个对象。我们开发了定量图像特征引擎(QIFE),这是一个开源的特征提取框架,专注于模块化、标准、并行化、来源和集成。研究人员可以通过创建实现其现有接口的输入和输出组件,轻松地将其与现有的分割和成像工作流程集成。通过以牺牲内存使用为代价并行执行,可以提高计算效率。不同的并行化级别提供不同的权衡,最佳设置将取决于要处理的数据集的大小和组成。

相似文献

[1]
Quantitative Image Feature Engine (QIFE): an Open-Source, Modular Engine for 3D Quantitative Feature Extraction from Volumetric Medical Images.

J Digit Imaging. 2018-8

[2]
IBEX: an open infrastructure software platform to facilitate collaborative work in radiomics.

Med Phys. 2015-3

[3]
CASToR: a generic data organization and processing code framework for multi-modal and multi-dimensional tomographic reconstruction.

Phys Med Biol. 2018-9-10

[4]
Technical Note: Ontology-guided radiomics analysis workflow (O-RAW).

Med Phys. 2019-10-25

[5]
Reproducibility of F18-FDG PET radiomic features for different cervical tumor segmentation methods, gray-level discretization, and reconstruction algorithms.

J Appl Clin Med Phys. 2017-11

[6]
Reproducible evaluation of classification methods in Alzheimer's disease: Framework and application to MRI and PET data.

Neuroimage. 2018-8-18

[7]
Advantages and Disadvantages in Image Processing with Free Software in Radiology.

J Med Syst. 2018-1-15

[8]
Radiomics: the process and the challenges.

Magn Reson Imaging. 2012-8-13

[9]
Quantification of body-torso-wide tissue composition on low-dose CT images via automatic anatomy recognition.

Med Phys. 2019-2-5

[10]
Multi-object segmentation framework using deformable models for medical imaging analysis.

Med Biol Eng Comput. 2016-8

引用本文的文献

[1]
Differentiation of canine and feline neoplasms using multi-modal imaging and machine learning.

Sci Rep. 2025-5-27

[2]
AI-ready rectal cancer MR imaging: a workflow for tumor detection and segmentation.

BMC Med Imaging. 2025-3-14

[3]
Application of radiomics for diagnosis, subtyping, and prognostication of medulloblastomas: a systematic review.

Neurosurg Rev. 2024-10-29

[4]
Artificial Intelligence in Pancreatic Image Analysis: A Review.

Sensors (Basel). 2024-7-22

[5]
QuantImage v2: a comprehensive and integrated physician-centered cloud platform for radiomics and machine learning research.

Eur Radiol Exp. 2023-3-22

[6]
Artificial intelligence and machine learning in cancer imaging.

Commun Med (Lond). 2022-10-27

[7]
Deep Learning With Radiomics for Disease Diagnosis and Treatment: Challenges and Potential.

Front Oncol. 2022-2-17

[8]
Benchmarking Various Radiomic Toolkit Features While Applying the Image Biomarker Standardization Initiative toward Clinical Translation of Radiomic Analysis.

J Digit Imaging. 2021-10

[9]
Quantitative image features from radiomic biopsy differentiate oncocytoma from chromophobe renal cell carcinoma.

J Med Imaging (Bellingham). 2021-9

[10]
Machine learning approach to differentiation of peripheral schwannomas and neurofibromas: A multi-center study.

Neuro Oncol. 2022-4-1

本文引用的文献

[1]
Computational Radiomics System to Decode the Radiographic Phenotype.

Cancer Res. 2017-11-1

[2]
A Rapid Segmentation-Insensitive "Digital Biopsy" Method for Radiomic Feature Extraction: Method and Pilot Study Using CT Images of Non-Small Cell Lung Cancer.

Tomography. 2016-12

[3]
Radiomics of Lung Nodules: A Multi-Institutional Study of Robustness and Agreement of Quantitative Imaging Features.

Tomography. 2016-12

[4]
CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma.

Radiother Oncol. 2015-3

[5]
IBEX: an open infrastructure software platform to facilitate collaborative work in radiomics.

Med Phys. 2015-3

[6]
Robust Radiomics feature quantification using semiautomatic volumetric segmentation.

PLoS One. 2014-7-15

[7]
Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach.

Nat Commun. 2014-6-3

[8]
Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features.

Radiology. 2014-10

[9]
Quantitative imaging in cancer evolution and ecology.

Radiology. 2013-10

[10]
Stability of FDG-PET Radiomics features: an integrated analysis of test-retest and inter-observer variability.

Acta Oncol. 2013-9-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索