Suppr超能文献

技术说明:本体引导的放射组学分析工作流程(O-RAW)。

Technical Note: Ontology-guided radiomics analysis workflow (O-RAW).

机构信息

Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Development Biology, Maastricht University Medical Centre+, Maastricht, 6229 ET, The Netherlands.

出版信息

Med Phys. 2019 Dec;46(12):5677-5684. doi: 10.1002/mp.13844. Epub 2019 Oct 25.

Abstract

PURPOSE

Radiomics is the process to automate tumor feature extraction from medical images. This has shown potential for quantifying the tumor phenotype and predicting treatment response. The three major challenges of radiomics research and clinical adoption are: (a) lack of standardized methodology for radiomics analyses, (b) lack of a universal lexicon to denote features that are semantically equivalent, and (c) lists of feature values alone do not sufficiently capture the details of feature extraction that might nonetheless strongly affect feature values (e.g. image normalization or interpolation parameters). These barriers hamper multicenter validation studies applying subtly different imaging protocols, preprocessing steps and radiomics software. We propose an open-source ontology-guided radiomics analysis workflow (O-RAW) to address the above challenges in the following manner: (a) distributing a free and open-source software package for radiomics analysis, (b) deploying a standard lexicon to uniquely describe features in common usage and (c) provide methods to publish radiomic features as a semantically interoperable data graph object complying to FAIR (findable accessible interoperable reusable) data principles.

METHODS

O-RAW was developed in Python, and has three major modules using open-source component libraries (PyRadiomics Extension and PyRadiomics). First, PyRadiomics Extension takes standard DICOM-RT (Radiotherapy) input objects (i.e. a DICOM series and an RTSTRUCT file) and parses them as arrays of voxel intensities and a binary mask corresponding to a volume of interest (VOI). Next, these arrays are passed into PyRadiomics, which performs the feature extraction procedure and returns a Python dictionary object. Lastly, PyRadiomics Extension parses this dictionary as a W3C-compliant Semantic Web "triple store" (i.e., list of subject-predicate-object statements) with relevant semantic meta-labels drawn from the radiation oncology ontology and radiomics ontology. The output can be published on an SPARQL endpoint, and can be remotely examined via SPARQL queries or to a comma separated file for further analysis.

RESULTS

We showed that O-RAW executed efficiently on four datasets with different modalities, RIDER (CT), MMD (CT), CROSS (PET) and THUNDER (MR). The test was performed on an HP laptop running Windows 7 operating system and 8GB RAM on which we noted execution time including DICOM images and associated RTSTRUCT matching, binary mask conversion of a single VOI, batch-processing of feature extraction (105 basic features in PyRadiomics), and the conversion to an resource description framework (RDF) object. The results were (RIDER) 407.3, (MMD) 123.5, (CROSS) 513.2 and (THUNDER) 128.9 s for a single VOI. In addition, we demonstrated a use case, taking images from a public repository and publishing the radiomics results as FAIR data in this study on www.radiomics.org. Finally, we provided a practical instance to show how a user could query radiomic features and track the calculation details based on the RDF graph object created by O-RAW via a simple SPARQL query.

CONCLUSIONS

We implemented O-RAW for FAIR radiomics analysis, and successfully published radiomic features from DICOM-RT objects as semantic web triples. Its practicability and flexibility can greatly increase the development of radiomics research and ease transfer to clinical practice.

摘要

目的

放射组学是一种从医学图像中自动提取肿瘤特征的方法。它已经显示出了定量肿瘤表型和预测治疗反应的潜力。放射组学研究和临床应用的三个主要挑战是:(a)缺乏放射组学分析的标准化方法,(b)缺乏表示语义等效特征的通用词汇表,以及(c)特征值列表本身不足以捕获可能强烈影响特征值的特征提取细节(例如图像归一化或插值参数)。这些障碍阻碍了应用略有不同的成像协议、预处理步骤和放射组学软件的多中心验证研究。我们提出了一种开源的基于本体的放射组学分析工作流程(O-RAW),以通过以下方式解决上述挑战:(a)分发用于放射组学分析的免费和开源软件包,(b)部署一个标准词汇表来唯一地描述常用特征,以及(c)提供发布放射组学特征的方法,作为符合 FAIR(可发现、可访问、可互操作、可重用)数据原则的语义可互操作数据图对象。

方法

O-RAW 是用 Python 开发的,有三个主要模块,使用了开源组件库(PyRadiomics Extension 和 PyRadiomics)。首先,PyRadiomics Extension 采用标准的 DICOM-RT(放射治疗)输入对象(即 DICOM 系列和 RTSTRUCT 文件),并将它们解析为体素强度的数组和对应感兴趣体积(VOI)的二进制掩模。接下来,这些数组被传递给 PyRadiomics,它执行特征提取过程,并返回一个 Python 字典对象。最后,PyRadiomics Extension 将这个字典解析为符合 W3C 的语义 Web“三元组存储”(即,主题-谓词-对象语句列表),其中包含来自放射肿瘤学本体和放射组学本体的相关语义元标签。输出可以发布到 SPARQL 端点上,并可以通过 SPARQL 查询或逗号分隔文件进行远程检查,以便进一步分析。

结果

我们展示了 O-RAW 在四个不同模态的数据集 RIDER(CT)、MMD(CT)、CROSS(PET)和 THUNDER(MR)上高效地执行。测试在运行 Windows 7 操作系统的 HP 笔记本电脑上进行,该电脑有 8GB 的 RAM,我们记录了执行时间,包括 DICOM 图像和相关 RTSTRUCT 匹配、单个 VOI 的二进制掩模转换、特征提取的批处理(PyRadiomics 中的 105 个基本特征),以及转换为资源描述框架(RDF)对象。结果是(RIDER)407.3、(MMD)123.5、(CROSS)513.2 和(THUNDER)128.9 秒,用于单个 VOI。此外,我们展示了一个用例,从公共存储库中获取图像,并在本研究中以 FAIR 数据的形式发布放射组学结果,网址是 www.radiomics.org。最后,我们提供了一个实际的例子,展示了如何基于 O-RAW 创建的 RDF 图对象,通过简单的 SPARQL 查询查询放射组学特征并跟踪计算细节。

结论

我们实现了 O-RAW 用于 FAIR 放射组学分析,并成功地将 DICOM-RT 对象的放射组学特征发布为语义 Web 三元组。它的实用性和灵活性可以极大地促进放射组学研究的发展,并简化向临床实践的转移。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b03/6916323/163cf405b5ce/MP-46-5677-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验