Department of Collective Behaviour, Max Planck Institute for Ornithology, Konstanz, Germany.
Department of Biology, University of Konstanz, Konstanz, Germany.
J Anim Ecol. 2018 Jan;87(1):128-138. doi: 10.1111/1365-2656.12764. Epub 2017 Nov 2.
There is increasing interest in using dynamic social networks in the study of animal sociality and its consequences. However, there is a general lack of guidance on the when and how such an approach will be valuable. The aim of this paper is to provide a guide on when to choose dynamic vs. static social network analysis, and how to choose the appropriate temporal scale for the dynamic network. I first discuss the motivations for using dynamic animal social networks. I then provide guidance on how to choose between dynamic networks and the "standard" approach of using static networks. I discuss this in the context of the temporal scale of changes observed, of their predictability and of the data availability. Dynamic networks are important in a number of scenarios. First, if the network data are being compared to independent processes, such as the spread of information or disease or environmental changes, then dynamic networks will provide more accurate estimates of spreading rates. Second, if the network has predictable patterns of change, for example diel cycles or seasonal changes, then dynamic networks should be used to capture the impact of these changes. Third, dynamic networks are important for studies of spread through networks when the relationship between edge weight and transmission probability is nonlinear. Finally, dynamic social networks are also useful in situations where interactions among individuals are dense, such as in studies of captive groups. The use of static vs. dynamic network requires careful consideration, both from a research question perspective and from a data perspective, and this paper provides a guide on how to evaluate the relative importance of these.
人们越来越感兴趣地将动态社交网络应用于动物社会性及其后果的研究中。然而,对于这种方法何时以及如何具有价值,目前还普遍缺乏指导。本文旨在提供何时选择动态与静态社交网络分析的指南,以及如何选择适当的时间尺度来构建动态网络。我首先讨论了使用动态动物社交网络的动机。然后,我提供了在动态网络和使用静态网络的“标准”方法之间进行选择的指导。我在观察到的变化时间尺度、其可预测性和数据可用性的背景下讨论了这一点。在许多情况下,动态网络都很重要。首先,如果将网络数据与独立过程(如信息传播、疾病传播或环境变化)进行比较,则动态网络将更准确地估计传播速度。其次,如果网络具有可预测的变化模式,例如昼夜节律或季节性变化,则应使用动态网络来捕获这些变化的影响。第三,当边缘权重与传输概率之间的关系是非线性时,动态网络对于通过网络传播的研究很重要。最后,在个体之间的相互作用密集的情况下,例如在圈养群体的研究中,动态社交网络也很有用。静态与动态网络的使用需要仔细考虑,既要从研究问题的角度考虑,也要从数据的角度考虑,本文提供了如何评估这些因素相对重要性的指南。