Suppr超能文献

错配嘌呤:隐含的替代物和隐藏的 Hoogsteen 配对。

Mismodeled purines: implicit alternates and hidden Hoogsteens.

机构信息

Department of Biochemistry, Duke University, Durham, NC 27710, USA.

出版信息

Acta Crystallogr D Struct Biol. 2017 Oct 1;73(Pt 10):852-859. doi: 10.1107/S2059798317013729. Epub 2017 Oct 2.

Abstract

Hoogsteen base pairs are seen in DNA crystal structures, but only rarely. This study tests whether Hoogsteens or other syn purines are either under-modeled or over-modeled, which are known problems for rare conformations. Candidate purines needing a syn/anti 180° flip were identified by diagnostic patterns of difference electron-density peaks. Manual inspection narrowed 105 flip candidates to 20 convincing cases, all at ≤2.7 Å resolution. Rebuilding and refinement confirmed that 14 of these were authentic purine flips. Seven examples are modeled as Watson-Crick base pairs but should be Hoogsteens (commonest at duplex termini), and three had the opposite issue. Syn/anti flips were also needed for some single-stranded purines. Five of the 20 convincing cases arose from an unmodeled alternate duplex running in the opposite direction. These are in semi-palindromic DNA sequences bound by a homodimeric protein and show flipped-purine-like difference peaks at residues where the palindrome is imperfect. This study documents types of incorrect modeling which are worth avoiding. However, the primary conclusions are that such mistakes are infrequent, the bias towards fitting anti purines is very slight, and the occurrence rate of Hoogsteen base pairs in DNA crystal structures remains unchanged from earlier estimates at ∼0.3%.

摘要

Hoogsteen 碱基对可见于 DNA 晶体结构中,但很少见。本研究测试 Hoogsteen 碱基对或其他嘌呤是否存在建模不足或过度建模的情况,这是稀有构象的已知问题。通过差异电子密度峰的诊断模式,鉴定出需要顺/反 180°翻转的候选嘌呤。手动检查将 105 个翻转候选物缩小到 20 个可信的案例,所有分辨率均≤2.7 Å。重建和精修证实,其中 14 个是真正的嘌呤翻转。这 7 个例子被建模为 Watson-Crick 碱基对,但应该是 Hoogsteen 碱基对(最常见于双链末端),其中 3 个存在相反的问题。一些单链嘌呤也需要顺/反翻转。在 20 个可信案例中,有 5 个来自未建模的反向双链,它们以相反的方向运行。这些位于由同源二聚体蛋白结合的半回文 DNA 序列中,在回文不完全的残基处显示出类似翻转嘌呤的差异峰。本研究记录了值得避免的不正确建模类型。然而,主要结论是此类错误很少见,拟合反嘌呤的偏差非常小,DNA 晶体结构中 Hoogsteen 碱基对的出现率与早期估计的约 0.3%保持不变。

相似文献

1
Mismodeled purines: implicit alternates and hidden Hoogsteens.
Acta Crystallogr D Struct Biol. 2017 Oct 1;73(Pt 10):852-859. doi: 10.1107/S2059798317013729. Epub 2017 Oct 2.
5
Why are Hoogsteen base pairs energetically disfavored in A-RNA compared to B-DNA?
Nucleic Acids Res. 2018 Nov 16;46(20):11099-11114. doi: 10.1093/nar/gky885.
7
Increasing occurrences and functional roles for high energy purine-pyrimidine base-pairs in nucleic acids.
Curr Opin Struct Biol. 2014 Feb;24:72-80. doi: 10.1016/j.sbi.2013.12.003. Epub 2014 Jan 9.
8
Formation of purine-purine mispairs by Sulfolobus solfataricus DNA polymerase IV.
Biochemistry. 2008 Aug 5;47(31):8157-64. doi: 10.1021/bi800820m. Epub 2008 Jul 11.
9
Parallel-stranded duplex DNA containing blocks of trans purine-purine and purine-pyrimidine base pairs.
Nucleic Acids Res. 1994 Aug 25;22(16):3293-303. doi: 10.1093/nar/22.16.3293.

引用本文的文献

1
Automated multiconformer model building for X-ray crystallography and cryo-EM.
Elife. 2024 Jun 21;12:RP90606. doi: 10.7554/eLife.90606.
2
Hydrogen bonding in duplex DNA probed by DNP enhanced solid-state NMR N-H bond length measurements.
Front Mol Biosci. 2023 Dec 4;10:1286172. doi: 10.3389/fmolb.2023.1286172. eCollection 2023.
3
4
Probing Watson-Crick and Hoogsteen base pairing in duplex DNA using dynamic nuclear polarization solid-state NMR spectroscopy.
Proc Natl Acad Sci U S A. 2022 Jul 26;119(30):e2200681119. doi: 10.1073/pnas.2200681119. Epub 2022 Jul 20.
5
Revealing A-T and G-C Hoogsteen base pairs in stressed protein-bound duplex DNA.
Nucleic Acids Res. 2021 Dec 2;49(21):12540-12555. doi: 10.1093/nar/gkab936.
6
Infrared Spectroscopic Observation of a G-C Hoogsteen Base Pair in the DNA:TATA-Box Binding Protein Complex Under Solution Conditions.
Angew Chem Int Ed Engl. 2019 Aug 26;58(35):12010-12013. doi: 10.1002/anie.201902693. Epub 2019 Jul 25.
8
Modulation of Hoogsteen dynamics on DNA recognition.
Nat Commun. 2018 Apr 16;9(1):1473. doi: 10.1038/s41467-018-03516-1.

本文引用的文献

1
New insights into Hoogsteen base pairs in DNA duplexes from a structure-based survey.
Nucleic Acids Res. 2015 Apr 20;43(7):3420-33. doi: 10.1093/nar/gkv241. Epub 2015 Mar 26.
2
The rate of cis-trans conformation errors is increasing in low-resolution crystal structures.
Acta Crystallogr D Biol Crystallogr. 2015 Mar;71(Pt 3):706-9. doi: 10.1107/S1399004715000826. Epub 2015 Feb 26.
4
The structure of Bradyrhizobium japonicum transcription factor FixK2 unveils sites of DNA binding and oxidation.
J Biol Chem. 2013 May 17;288(20):14238-14246. doi: 10.1074/jbc.M113.465484. Epub 2013 Apr 1.
5
How an exonuclease decides where to stop in trimming of nucleic acids: crystal structures of RNase T-product complexes.
Nucleic Acids Res. 2012 Sep;40(16):8144-54. doi: 10.1093/nar/gks548. Epub 2012 Jun 19.
7
Replication of N2,3-ethenoguanine by DNA polymerases.
Angew Chem Int Ed Engl. 2012 May 29;51(22):5466-9. doi: 10.1002/anie.201109004. Epub 2012 Apr 4.
8
Transient Hoogsteen base pairs in canonical duplex DNA.
Nature. 2011 Feb 24;470(7335):498-502. doi: 10.1038/nature09775. Epub 2011 Jan 26.
9
DNA recognition and the precleavage state during single-stranded DNA transposition in D. radiodurans.
EMBO J. 2010 Nov 17;29(22):3840-52. doi: 10.1038/emboj.2010.241. Epub 2010 Oct 1.
10
Asymmetric DNA recognition by the OkrAI endonuclease, an isoschizomer of BamHI.
Nucleic Acids Res. 2011 Jan;39(2):712-9. doi: 10.1093/nar/gkq779. Epub 2010 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验