Wankowicz Stephanie A, Ravikumar Ashraya, Sharma Shivani, Riley Blake T, Raju Akshay, Flowers Jessica, Hogan Daniel, van den Bedem Henry, Keedy Daniel A, Fraser James S
Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.
Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031.
bioRxiv. 2024 Apr 30:2023.06.28.546963. doi: 10.1101/2023.06.28.546963.
In their folded state, biomolecules exchange between multiple conformational states that are crucial for their function. Traditional structural biology methods, such as X-ray crystallography and cryogenic electron microscopy (cryo-EM), produce density maps that are ensemble averages, reflecting molecules in various conformations. Yet, most models derived from these maps explicitly represent only a single conformation, overlooking the complexity of biomolecular structures. To accurately reflect the diversity of biomolecular forms, there is a pressing need to shift towards modeling structural ensembles that mirror the experimental data. However, the challenge of distinguishing signal from noise complicates manual efforts to create these models. In response, we introduce the latest enhancements to qFit, an automated computational strategy designed to incorporate protein conformational heterogeneity into models built into density maps. These algorithmic improvements in qFit are substantiated by superior and geometry metrics across a wide range of proteins. Importantly, unlike more complex multicopy ensemble models, the multiconformer models produced by qFit can be manually modified in most major model building software (e.g. Coot) and fit can be further improved by refinement using standard pipelines (e.g. Phenix, Refmac, Buster). By reducing the barrier of creating multiconformer models, qFit can foster the development of new hypotheses about the relationship between macromolecular conformational dynamics and function.
在其折叠状态下,生物分子在对其功能至关重要的多种构象状态之间进行交换。传统的结构生物学方法,如X射线晶体学和低温电子显微镜(cryo-EM),产生的密度图是总体平均值,反映了处于各种构象的分子。然而,从这些图中推导出来的大多数模型仅明确表示单一构象,忽略了生物分子结构的复杂性。为了准确反映生物分子形式的多样性,迫切需要转向对反映实验数据的结构集合进行建模。然而,区分信号与噪声的挑战使创建这些模型的人工努力变得复杂。作为回应,我们介绍了qFit的最新改进,qFit是一种自动化计算策略,旨在将蛋白质构象异质性纳入基于密度图构建的模型中。qFit在算法上的这些改进在广泛的蛋白质上通过卓越的 和几何指标得到了证实。重要的是,与更复杂的多拷贝集合模型不同,qFit产生的多构象模型可以在大多数主要的模型构建软件(如Coot)中手动修改,并且可以通过使用标准流程(如Phenix、Refmac、Buster)进行细化来进一步提高拟合度。通过降低创建多构象模型的障碍,qFit可以促进关于大分子构象动力学与功能之间关系的新假设的发展。