Vamvakas S, Elfarra A A, Dekant W, Henschler D, Anders M W
Institut für Toxikologie, Universität Würzburg, F.R.G.
Mutat Res. 1988 Sep;206(1):83-90. doi: 10.1016/0165-1218(88)90144-9.
The mutagenicity of the glutathione S-conjugate S-(1,2-dichlorovinyl)glutathione (DCVG), the cysteine conjugates S-(1,2-dichlorovinyl)-L-cysteine (DCVC) and S-(1,2-dichlorovinyl)-DL-alpha-methylcysteine (DCVMC), and the homocysteine conjugates S-(1,2-dichlorovinyl)-L-homocysteine (DCVHC) and S-(1,2-dichlorovinyl)-DL-alpha-methylhomocysteine (DCVMHC) was investigated in Salmonella typhimurium strain TA2638 with the preincubation assay. DCVC was a strong, direct-acting mutagen; the cysteine conjugate beta-lyase inhibitor aminooxyacetic acid decreased significantly the number of revertants induced by DCVC; rat renal mitochondria (11,000 X g pellet) and cytosol (105,000 X g supernatant) with high beta-lyase activity increased DCVC mutagenicity at high DCVC concentrations. DCVG was also mutagenic without the addition of mammalian activating enzymes; the presence of low gamma-glutamyltransferase activity in bacteria, the reduction of DCVG mutagenicity by aminooxyacetic acid, and the potentiation of DCVG mutagenicity by rat kidney mitochondria and microsomes (105,000 X g pellet) with high gamma-glutamyltransferase activity indicate that gamma-glutamyltransferase and beta-lyase participate in the metabolism of DCVG to mutagenic intermediates. The homocysteine conjugate DCVHC was only weakly mutagenic in the presence of rat renal cytosol, which exhibits considerable gamma-lyase activity, this mutagenic effect was also inhibited by aminooxyacetic acid. The conjugates DCVMC and DCVMHC, which are not metabolized to reactive intermediates, were not mutagenic at concentrations up to 1 mumole/plate. The results demonstrate that gamma-glutamyltransferase and beta-lyase are the key enzymes in the biotransformation of cysteine and glutathione conjugates to reactive intermediates that interact with DNA and thereby cause mutagenicity.
采用预孵育试验,在鼠伤寒沙门氏菌TA2638菌株中研究了谷胱甘肽S-共轭物S-(1,2-二氯乙烯基)谷胱甘肽(DCVG)、半胱氨酸共轭物S-(1,2-二氯乙烯基)-L-半胱氨酸(DCVC)和S-(1,2-二氯乙烯基)-DL-α-甲基半胱氨酸(DCVMC)以及同型半胱氨酸共轭物S-(1,2-二氯乙烯基)-L-同型半胱氨酸(DCVHC)和S-(1,2-二氯乙烯基)-DL-α-甲基同型半胱氨酸(DCVMHC)的诱变性。DCVC是一种强效的直接作用诱变剂;半胱氨酸共轭物β-裂解酶抑制剂氨基氧乙酸显著降低了DCVC诱导的回复突变体数量;具有高β-裂解酶活性的大鼠肾线粒体(11,000×g沉淀)和胞质溶胶(105,000×g上清液)在高DCVC浓度下增加了DCVC的诱变性。DCVG在不添加哺乳动物活化酶的情况下也具有诱变性;细菌中低γ-谷氨酰转移酶活性的存在、氨基氧乙酸对DCVG诱变性的降低以及具有高γ-谷氨酰转移酶活性的大鼠肾线粒体和微粒体(105,000×g沉淀)对DCVG诱变性的增强表明,γ-谷氨酰转移酶和β-裂解酶参与了DCVG代谢为诱变中间体的过程。同型半胱氨酸共轭物DCVHC在存在具有相当γ-裂解酶活性的大鼠肾胞质溶胶时仅具有微弱的诱变性,这种诱变作用也被氨基氧乙酸抑制。共轭物DCVMC和DCVMHC不会代谢为反应性中间体,在浓度高达1微摩尔/平板时不具有诱变性。结果表明,γ-谷氨酰转移酶和β-裂解酶是半胱氨酸和谷胱甘肽共轭物生物转化为与DNA相互作用从而导致诱变性的反应性中间体的关键酶。