Division of Hematology/Oncology, Department of Medicine.
Center for Regenerative Medicine, Department of Orthopaedics.
Cardiovasc Res. 2017 Nov 1;113(13):1560-1573. doi: 10.1093/cvr/cvx161.
The pathogenic mechanisms of pulmonary arterial hypertension (PAH) remain unclear, but involve dysfunctional endothelial cells (ECs), dysregulated immunity and inflammation in the lung. We hypothesize that a developmental process called endothelial to haematopoietic transition (EHT) contributes to the pathogenesis of pulmonary hypertension (PH). We sought to determine the role of EHT in mouse models of PH, to characterize specific cell types involved in this process, and to identify potential therapeutic targets to prevent disease progression.
When transgenic mice with fluorescence protein ZsGreen-labelled ECs were treated with Sugen/hypoxia (Su/Hx) combination to induce PH, the percentage of ZsGreen+ haematopoietic cells in the peripheral blood, primarily of myeloid lineage, significantly increased. This occurrence coincided with the depletion of bone marrow (BM) ZsGreen+ c-kit+ CD45- endothelial progenitor cells (EPCs), which could be detected accumulating in the lung upon PH-induction. Quantitative RT-PCR based gene array analysis showed that key transcription factors driving haematopoiesis were expressed in these EPCs. When transplanted into lethally irradiated recipient mice, the BM-derived EPCs exhibited long-term engraftment and haematopoietic differentiation capability, indicating these EPCs are haemogenic in nature. Specific inhibition of the critical haematopoietic transcription factor Runx1 blocked the EHT process in vivo, prevented egress of the BM EPCs and ultimately attenuated PH progression in Su/Hx- as well as in monocrotaline-induced PH in mice. Thus, myeloid-skewed EHT promotes the development of PH and inhibition of this process prevents disease progression in mouse models of PH. Furthermore, high levels of Runx1 expression were found in circulating CD34+ CD133+ EPCs isolated from peripheral blood of patients with PH, supporting the clinical relevance of our proposed mechanism of EHT.
EHT contributes to the pathogenesis of PAH. The transcription factor Runx1 may be a novel therapeutic target for the treatment of PAH.
肺动脉高压(PAH)的发病机制尚不清楚,但涉及到肺内皮细胞(EC)功能障碍、免疫失调和炎症。我们假设一种称为内皮向造血转化(EHT)的发育过程导致肺动脉高压(PH)的发生。我们试图确定 EHT 在 PH 小鼠模型中的作用,以确定参与该过程的特定细胞类型,并确定潜在的治疗靶点以防止疾病进展。
当用荧光蛋白 ZsGreen 标记的 EC 的转基因小鼠用 Sugen/低氧(Su/Hx)联合处理以诱导 PH 时,外周血中 ZsGreen+造血细胞的百分比,主要是骨髓谱系,显著增加。这种发生与骨髓(BM)ZsGreen+c-kit+CD45-内皮祖细胞(EPC)的耗竭同时发生,在 PH 诱导时可检测到这些 EPC 在肺中积累。基于定量 RT-PCR 的基因芯片分析显示,驱动造血的关键转录因子在这些 EPC 中表达。当移植到致死性照射的受体小鼠中时,BM 来源的 EPC 表现出长期的植入和造血分化能力,表明这些 EPC 本质上是造血的。关键造血转录因子 Runx1 的特异性抑制可阻止体内 EHT 过程,阻止 BM EPC 的迁出,并最终在 Su/Hx 以及在小鼠的单克隆抗体诱导的 PH 中减弱 PH 进展。因此,偏骨髓的 EHT 促进 PH 的发展,抑制该过程可防止 PH 小鼠模型中的疾病进展。此外,在从 PH 患者外周血中分离的循环 CD34+CD133+EPC 中发现高水平的 Runx1 表达,支持我们提出的 EHT 机制的临床相关性。
EHT 有助于 PAH 的发病机制。转录因子 Runx1 可能是治疗 PAH 的新的治疗靶点。