Fukui Institute for Fundamental Chemistry, Kyoto University , Kyoto 606-8103, Japan.
Department of Chemistry, Faculty of Science, Hokkaido University , Kita-Ku, Sapporo 060-0810, Japan.
J Am Chem Soc. 2017 Nov 15;139(45):16117-16125. doi: 10.1021/jacs.7b05917. Epub 2017 Nov 2.
The mechanism of the full catalytic cycle for Fe-chiral-bisphosphine-catalyzed cross-coupling reaction between alkyl halides and Grignard reagents (Nakamura and co-workers, J. Am. Chem. Soc. 2015, 137, 7128) was rationalized by using density functional theory (DFT) and multicomponent artificial force-induced reaction (MC-AFIR) methods. The computed mechanism consists of (a) C-Cl activation, (b) transmetalation, (c) C-Fe bond formation, and (d) C-C bond formation through reductive elimination. Our survey on the prereactant complexes suggested that formation of Fe(BenzP*)Ph and Fe(BenzP*)Ph complexes are thermodynamically feasible. Fe(BenzP*)Cl complex is the active intermediate for C-Cl activation. Fe(BenzP*)Ph complex can be formed if the concentration of Grignard reagent is high. However, it leads to biphenyl (byproduct) instead of the cross-coupling product. This explains why slow addition of Grignard reagent is critical for the cross-coupling reaction. The MC-AFIR method was used for systematic determination of transition states for C-Fe bond formation and C-C bond formation starting from the key intermediate Fe(BenzP*)PhCl. According to our detailed analysis, C-C bond formation is the selectivity-determining step. The computed enantiomeric ratio of 95:5 is in good agreement with the experimental ratio (90:10). Energy decomposition analysis suggested that the origin of the enantioselectivity is the deformation of Ph-ligand in Fe-complex, which is induced by the bulky tert-butyl group of BenzP* ligand. Our study provides important mechanistic insights for the cross-coupling reaction between alkyl halides and Grignard reagents and guides the design of efficient Fe-based catalysts for cross-coupling reactions.
手性双膦铁催化卤代烃与格氏试剂交叉偶联反应的全催化循环机制(中村等人,美国化学学会志,2015 年,137,7128)通过使用密度泛函理论(DFT)和多组分人工力诱导反应(MC-AFIR)方法进行了合理化。计算出的机制包括(a)C-Cl 活化,(b)转金属化,(c)C-Fe 键形成,以及(d)通过还原消除形成 C-C 键。我们对预反应物络合物的调查表明,形成 Fe(BenzP*)Ph 和 Fe(BenzP*)Ph 络合物在热力学上是可行的。Fe(BenzP*)Cl 络合物是 C-Cl 活化的活性中间体。如果格氏试剂的浓度高,则可以形成 Fe(BenzP*)Ph 络合物。但是,它会导致联苯(副产物)而不是交叉偶联产物。这解释了为什么缓慢添加格氏试剂对交叉偶联反应至关重要。MC-AFIR 方法用于系统地确定从关键中间体 Fe(BenzP*)PhCl 出发的 C-Fe 键形成和 C-C 键形成的过渡态。根据我们的详细分析,C-C 键形成是选择性决定步骤。计算出的对映体比 95:5 与实验比(90:10)吻合良好。能量分解分析表明,对映选择性的起源是 Fe-配合物中 Ph-配体的变形,这是由 BenzP*配体的叔丁基基团诱导的。我们的研究为卤代烃与格氏试剂的交叉偶联反应提供了重要的机理见解,并指导了用于交叉偶联反应的高效铁基催化剂的设计。