Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan.
Laboratory of Single-Cell Mass Spectrometry, The Institute of Physical and Chemical Rese2arch (RIKEN) Quantitative Biology Center, Suita, Osaka 565-0874, Japan.
Genetics. 2017 Dec;207(4):1519-1532. doi: 10.1534/genetics.117.300391. Epub 2017 Oct 11.
Ecdysteroids, including the biologically active hormone 20-hydroxyecdysone (20E), play essential roles in controlling many developmental and physiological events in insects. Ecdysteroid biosynthesis is achieved by a series of specialized enzymes encoded by the Halloween genes. Recently, a new class of Halloween gene, (), encoding a glutathione -transferase (GST) in dipteran and lepidopteran species, has been identified and characterized. GSTs are well known to conjugate substrates with the reduced form of glutathione (GSH), a bioactive tripeptide composed of glutamate, cysteine, and glycine. We hypothesized that GSH itself is required for ecdysteroid biosynthesis. However, the role of GSH in steroid hormone biosynthesis has not been examined in any organisms. Here, we report phenotypic analysis of a complete loss-of-function mutant in the γ () gene in the fruit fly encodes the evolutionarily conserved catalytic component of the enzyme that conjugates glutamate and cysteine in the GSH biosynthesis pathway. Complete loss-of-function leads to drastic GSH deficiency in the larval body fluid. mutant animals show a larval-arrest phenotype. Ecdysteroid titer in mutant larvae decreases, and the larval-arrest phenotype is rescued by oral administration of 20E or cholesterol. Moreover, mutant animals exhibit abnormal lipid deposition in the prothoracic gland, a steroidogenic organ during larval development. All of these phenotypes are reminiscent to loss-of-function animals. On the other hand, mutant larvae also exhibit a significant reduction in antioxidant capacity. Consistent with this phenotype, mutant larvae are more sensitive to oxidative stress response as compared to wild-type. Nevertheless, the ecdysteroid biosynthesis defect in mutant animals is not associated with loss of antioxidant function. Our data raise the unexpected hypothesis that a primary role of GSH in early larval development is ecdysteroid biosynthesis, independent from the antioxidant role of GSH.
蜕皮甾类,包括生物活性激素 20-羟基蜕皮甾酮(20E),在控制昆虫的许多发育和生理事件中起着至关重要的作用。蜕皮甾类生物合成是通过一系列由万圣节基因编码的专门酶来实现的。最近,一类新的万圣节基因,γ-谷氨酰半胱氨酸连接酶(GST),已在双翅目和鳞翅目物种中被鉴定和表征。众所周知,GST 将底物与还原型谷胱甘肽(GSH)结合,GSH 是一种由谷氨酸、半胱氨酸和甘氨酸组成的生物活性三肽。我们假设 GSH 本身是蜕皮甾类生物合成所必需的。然而,GSH 在类固醇激素生物合成中的作用尚未在任何生物体中进行研究。在这里,我们报告了果蝇中 γ-谷氨酰半胱氨酸连接酶(GST)完全功能丧失突变体的表型分析,γ-谷氨酰半胱氨酸连接酶(GST)编码 GSH 生物合成途径中谷氨酸和半胱氨酸结合酶的进化保守催化成分。完全功能丧失导致幼虫体液中 GSH 严重缺乏。γ-谷氨酰半胱氨酸连接酶(GST)突变动物表现出幼虫停滞表型。γ-谷氨酰半胱氨酸连接酶(GST)突变幼虫的蜕皮甾酮含量下降,口服 20E 或胆固醇可挽救幼虫停滞表型。此外,γ-谷氨酰半胱氨酸连接酶(GST)突变动物在幼虫发育过程中的类固醇生成器官前胸腺中表现出异常的脂质沉积。所有这些表型都类似于 Halloween 基因功能丧失动物。另一方面,γ-谷氨酰半胱氨酸连接酶(GST)突变幼虫的抗氧化能力也显著降低。与这种表型一致,γ-谷氨酰半胱氨酸连接酶(GST)突变幼虫对氧化应激反应的敏感性比野生型高。然而,γ-谷氨酰半胱氨酸连接酶(GST)突变动物的蜕皮甾类生物合成缺陷与抗氧化功能丧失无关。我们的数据提出了一个意想不到的假设,即 GSH 在早期幼虫发育中的主要作用是蜕皮甾类生物合成,与 GSH 的抗氧化作用无关。